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THEORETICAL STUDY OF CORRUGATED PLATES: 

SHEARING OF A TRAPEZOIDALLY  CORRUGATED  PLATE WITH 

TROUGH LINES  PERMITTED TO CURVE 

By Chuan-jui  Lin*  and  Charles Libove** 
Syracuse  University 

SUMMARY 

A t h e o r e t i c a l   a n a l y s i s  is presented  of   the elastic shearing  of a 
t r apezo ida l ly   co r ruga ted   p l a t e   w i th   d i sc re t e   a t t achmen t s  a t  the  ends 
of   the  corrugat ions.   Numerical   resul ts  on e f f e c t i v e   s h e a r   s t i f f n e s s ,  
stresses, and  displacements are presented   for   se lec ted   geometr ies  and 
end-attachment  conditions. It is shown tha t   the   f rame- l ike   deformat ion  
of  the  cross-sections,   which  results  from  the  absence  of  continuous end 
a t tachments ,   can   l ead   to   l a rge   t ransverse   bendi re  stresses and l a r g e  
r e d u c t i o n s   i n   s h e a r i n g   s t i f f n e s s .  

INTRODUCTION 

I n  a p rev ious   r epor t   ( r e f .   1 )  a t h e o r e t i c a l   a n a l y s i s  w a s  presented 
of t h e  e las t ic  shearing  of a t r a p e z o i d a l l y   c o r r u g a t e d   p l a t e   w i t h   d i s c r e t e  
attachment a t  the  corrugat ion  ends on the   assumpt ion   tha t   the   t rough  l ines  (mn 
i n   f i g .   1 )  are he ld   s t r a igh t .   Th i s   a s sumpt ion   l imi t ed   t he   app l i cab i l i t y  
of re ference  1 main ly   t o   t he  case i n  which  the  corrugated  plate is  
a t t a c h e d   t o  a f l a t   p l a t e   a l o n g  i t s  t rough  l ines .  

The present   repor t   ana lyzes   aga in   the  e las t ic  shear ing of a 
t r a p e z o i d a l l y   c o r r u g a t e d   p l a t e   b u t  removes the  assumption  that   the   t rough 
l i n e s  are h e l d   s t r a i g h t .  Thus the   p re sen t   ana lys i s  is a p p l i c a b l e   t o  a 
c o r r u g a t e d   p l a t e   a l o n e ,   r a t h e r   t h a n   t o  a cor ruga ted   p la te  which i s  
a t t ached   t o  a f l a t   p l a t e .  The removal of t h i s   c o n s t r a i n t   r e d u c e s ,  of 
c o u r s e ,   t h e   e f f e c t i v e   s h e a r i n g   s t i f f n e s s  and alters the   na tu re   o f   t he  
stresses and  displacements. 

The ana lys i s   o f   re fe rence  1 considered two kinds  of  conditions  along 
the  trough  l ines:   (a)  complete  freedom of r o t a t i o n  and  (b)  complete 
s u p p r e s s i o n   o f   r o t a t i o n .   I n   t h e   p r e s e n t   a n a l y s i s   o n l y   t h e   f i r s t   o f   t h e s e  
condi t ions  is  considered, as t h a t  is the  only  meaningful   condi t ion  for  a 
cor ruga ted   p la te   a lone .  

*NDEA Fellow 

**Professor  of  Mechanical  and  Aerospace  Engineering 



As in reference 1, three  different  types  of  discrete  attachment  at 
the  ends  of  the  corrugation  are  considered.  These  are  illustrated  in 
figure 2 and  may  be  described  as  follows: 

Point  attachments  at  the  ends  of  the  trough  lines  only  (fig. 
2 ( a ) ) ,  the  attachments  being  considered  as  mathematical  points,\ 
providhg feetraint  against  displacement  but  not  against 
rbtation. 

Point  attachments  at  the  ends  of.  both  the  trough  lines  and 
fhd  (rrest  lines  (fig.  2(b)),  the  attachments  again  being 
conbidered as mathematical  points. 

Very  wide  attachments  at  the  ends  of  the  trough  lines  only, as 
$hum in  figure 2(c). This  kind of attachment  is  approximated 
in  the  analysis  by  means  of  the  idealization  shown  in  figure 2(d), 
i .e.  by  adding , to  the  end  constraints  of  figure 2 (a),  end 
constraints  against  vertical  displacement  (but  not  against 
longitudinal  displacement)  at  the  junctions  of  the  trough  plate 
elements  and  the  adjacent  sloping  plate  elements. 

(i)  and  (ii)  no  consideration  is  given to the  possibility  that  the 
member to which  a  corrugation  end is attached  will  interfere  with  the 
deformation  of  the  corrugation. 

The  analysis  is  based  on  the  method of stationary  total  potential 
energy.  Each  cross  section  is  assumed  to  have  certain  degrees  of  freedom 
for  deformation  in  and  out  of  the  plane of the  cross  section.  By  equating 
to  zero  the  first  variation  of  the  total  potential  energy,  differential 
equations  and  boundary  conditions  are  obtained  for  these  degrees  of  freedom 
as  functions  of  the  longitudinal  coordinate ( z  in  fig. 1). Solution  of 
these  equations  leads  to  all  the  desired  information. 

Numerical  results  on  shearing  stiffness,  stresses  and  deformations 
for  selected  families  of  geometries  are  presented  and  discussed. 
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SrnOLS 

defined  by  equations  (13b) 

“ 

coefficients in the  displacement  equations  (C39) A1’ A3 

coefficients  in  equations (B50a) through  (B50e) 
for  displacements;  obtained  by  solving  equations 
(B52),  (B53) or (B54), depending  on  the  type  of 
attachments  at  the  ends  of  the  corrugations 

A I ,  A*, A$, A* 3 7 
coefficients  in  equations (B42) for  displacements 

defined  by  the  first  four  of  equations (30) 

coefficients  in  equations  (C33)  for  displacements 

coefficient  in  displacement  equation (C39) 

defined  by  equations  (C8b) 

defined  by  equations (40) 

coefficients  in  expression  for  Ub  (see  eqs. 
(11) and (12)) 

a 11’ =129  a22 

,. 
a defined  by  equation (B7) 

a*  a*  a* 11’ 12’ 22 
.., .. .., 
a a 11’ 12’ a22 

defined  by  equations (B25) 

defined  by  equations (C7) 

a’ 22 defined  by  the  first  of  equations  (C14) 

a* 22 defined  by  the  first  of  equations  (C22) 

defined  by  equation (D6) a22 

aq2 
- 

defined  by  the  first: of equations (Dl71 

obtained  by  solving  equations  (B23) 

B*, B?j 1 coefficients  in  equations (D34) for  displacements 

B6 coefficient  in  equations (D34) for  displacements 
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b 

A 

b 

1 

C 

Ct1,  c*  c* 12'  22 

- 
coo = Gt/k 

D 

one-half th'e length  of  the  corrugations 
(see  fig. l(b)) 

defined  by  equations (40) 

coefficients  in  expression  for  Uext  (see 
eqs.  (2)  and (3) )  

defined  by  equation  (B7) 

defined  by  equations  (B26) 

obtained  by  solving  equations  (B23) 

characteristic  length  (taken  as  pitch p in 
numerical  work) 

coefficients  in  expression  for  Ush  (see eps. 
( 5 )  and (64) 

defined  by  equation  (B7) 

defined  by  equations  (B27) 

defined  by  equations  (32) 

defined  by  equations  (B60) 

frame  flexural  stiffness;  see  equation (14) 

obtained  by  solving  equations  (B23) 

defined  by  equations  (D23)  and  (D24) 

defined  by  equations  (C28)  and  (C29) 

coefficients  in  expression  for  ush  (see  eqs. 
(5) and (6b) 1 

defined  by  equations  (B28) 
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... .w 

dll’ d21 
A , .  

dl, d2,  etc. 

E 

E’ 

-E1O 

... 
E1O 

e 

e  e  etc. 00’ 11’ 

e e  e 11’ 12’  22 

e60,  eTl,  etc. 

A 

e 00 
- 
e* e*  e* 

- - 
11’ 12’  22 

;** 
00 

ell’  12’  e22’  elO’  e20 e 

.I’ e’’ .I’ 11’ 12’ 22 

e’  e’ 00’ 10’ eils  ei29  e;2 

e’ 22 

defined  by  equations  (B62) 

defined  by  equations  (B8) 

Young’s  modulus  associated  widh  frame  bending 
of  the  cross  sections 

Young’s  modulus  associated  with  longitudinal 
extension 

coefficient  in  equations  (B42),  (B50a),  (B50b) 
and  (B50e)  for  displacements 

defined  by  the  last  of  equations (30) 

one-half  the  width  of  the  trough  plate  element 
(see  fig.  l(a)) 

defined  by  equations  (A2) 

coefficients  in  expression  for  Utw  (see  eqs. 
(9) and (10)) 

coefficient  in  expression  for  ush  (see  eqs. 
(5) and  (6~)) 

defined  by 

defined  by 

defined  by 

defined  by 

defined  by 

defined  by 

defined  by 

defined  by 

defined  by 

equation (B7) 

equation  (D5) 

equations (B30) 

equations  (B29) 

equation  (D17) 

equations  (B62) 

equations  (C6) 

equations  (C10) 

equation  (C14) 
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defined  by  equations  (C22) 

F shear  force  (see  fig. l(b)) 

width  of  the  crest  plate  element  (see  fig. l(a)) f 
.. 
f defined  by  equation  (B7) 

functions  of z defined  by  equations  (31) 

functions of z defined  by  equations  (31) 

G shear  modulus  associated  with  middle  surface 
ehear  of  the  plate  elements 

G’ shear  modulus  associated  with  torsion of the 
plate  elements 

defined  by  equations  (39) g21’ g229 g31 ’ ‘32 
n 

g defined  by  equation  (B7) 

height  of  corrugation  (see  fig. l(a)) h 

n 

h defined by equation  (B7) 

torsion  constants  of  plate  elements 01, 12,  23 
respectively  (see  eqs. (7) and (8)) 

J1, J y  J3 

defined  by  equation  (B7) 

width  of  the  inclined  plate  element  (see  fig. 1 (a)) k 

coefficients  in  characteristic  equations  (B12) 
and (B20) ; defined by equations  (B13) 

A 

k defined by equation  (B7) 

defined  by  equations (CZl) 

defined  by  equations  (D16) 

6 
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defined  by  equations  (B24) 

defined  by  equations (C27) 

Lll’ L1* 9 etc.  defined  by  equations  (D22) 
.. 
m defined  by  equation  (B7) 

N4’  N5 defined  by  equations  (B56) 

Nll, N12, etc.  defined  by  equations  (B55a)  through  (B55d) 

- 
N5 defined  by  equation  (B58) 

- - - - 
N41’ *42’  N43’ N44 

N51’  N52’  N53’  N54’  N55 

defined  by  equations  (B57a) 

- - - - - 
defined  by  equations  (B57b) 

defined  by  equations  (B59) 

A , . , . , .  

n19  n2,  n3,  n4  defined  by  equations  (B9) 

PB, PC, PD, PE real  numbers  defined  by  equations  (B46)  through 
(B49);  obtained  by  solving  equations  (B23)  with 
j = 1 and 5 and  noting  equations  (B31) 

p3 

P  P12,  etc. 11’ 

P 

P’ 

QB, Qc, QDI QE 

Q3 

defined  by  equation  (C41b) 

defined  by  equations  (C41a) 

pitch  of  corrugation  (see  fig. l(a)) 

developed  width  of  one  corrugation,  2e + 2k + f 

defined  by  equations  (B10) 

real  numbers  defined  by  equations  (B46)  through 
(B49);  obtained  by  solving  equations  (B23)  with 
j = 1 and  5  and  noting  equations  (B31) 

defined  by  equation  (D37) 

defined  by  equations  (D36) 
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defined  by equations (Bll) 

R variable  in  characteristic  equation (B20) 

Rj  (j=1,2,. . . ,lo) roots of characteristic  equation (B20) 

complex  conjugate of R 1 

Rs* complex  conjugate of R5 

.. 
R variable  in  characteristic  equation (C19) 

ij (j=1,2,. . . ,6) roots  gf characteristic  equation (ClY) 

A 

R variable  in  characteristic  equation (D14) 

roots of characteristic  equation (D14) 

r R/c  variable  in  Characteristic  equation (B12) 

j 
E R  /c (j=1,2,. .. ,101 

r = R/c 
“ 

A A  

r = R/c 

sv, SY 
n n  

TB,  Tc, 9, TE 

t 

n n  tu, tx 

real  numbers defined  by equations (B46) through 
(B49); obtained  by solving  equations (B23) with 
j = 1  and 5 and  noting equations (B31) 

transverse  coordinates along  the  cross-sectional 
centerline (see  fig.  3 (a)) 

defined by equations (B60) 

total  potential energy of a single  corrugation 

real  numbers defined  by equations (B46) through 
(B49); obtained  by solving  equations (B23) with 
j = 1 and  5  and  noting equations (B31) 

thickness of corrugation (see  fig. l(a)) 

defined  by equations (B60) 
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U 

'b 

'ext 

'sh 

Utw 

U 

U 
0 

V 

W 

- 
W 

X 

strain  energy  of an entire  corrugation  (see 
eq.  (15));  also  real  part  of R1 and R2 when 
R1 and R2 are  complex  (see  eqs. (B44)) 

strain  energy  per  unit  length  of  corrugation 
associated  with  frame  bending of the  cross 
sections  (see  eq. (11)) 

strain  energy  per  unit  length  of  corrugation 
associated  with  longitudinal  extension  (see 
eq. (2) )  

strain  energy  per  unit  length of corrugation 
associated  with  middle  surface  shear  (see 
eq. (5)) 

strain  energy  per  unit  length  of  corrugation 
associated  with  torsion  (see eq. (9)) 

longitudinal  displacement 

one-half  the  relative  shearing  aisplacement  of 
two  adjacent  trough  lines  (see  fig. 3(b)) 

longitudinal  dis  lacement  (function  of z) along 
junction  line  (see  fig. 3(b)) 

longitudinal  displacement  (function  of z )  along 
junction  line 0 (see  fig. 3(b)) 
imaginary  part  of R1,  negative of imaginary  part 
of R2  when  R1  and R2 are  complex  (see  eqs. (B44)) 

functions  of z defined  by  equations  (33) 

parameters  defining  the  deformation  of  the  cross 
section  in  its own plane  (functions of z )  (see 
fig.  3(c)) 

function  of z defined  by  equation (C48) 

function  of z defined  by  equation (D44) 

real  part  of R and R6 when  R5  and  R6  are  complex 
(see  eqs. (13445) 
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X transverse  coordinate  (see  fig. l(b)) 

Y 

2 

B B  alY a2, etc. 

6 

c c  B1, B2, etc. 

B1, B 2 ,  etc. 

B1, B2, etc. 

D D  

E E  

Y 

Y1’ Y 2 9  Y3 

‘j J j 

yc = Cj/Aj 

D = D / A  

= B . / A  

j 

j j 

’j J j 
E = E . / A  

B* C* D*  E* 
Y1 ¶ Y1 9 Y1 ¶ Y1 

Y5 9 Y 5  9 Y5 9 Y5 
B* C* D* E* 

E 

imaginary  part of R5, negative  of  imaginary  part 
of ~6 when R5 and R6 are  complex  (see  eqs . ( B 4 4 ) )  

longitudinal  coordinate  (see  fig. l(b)) 

defined  by  equations (B61)  

defined  by  equation  (13a) 

defined  by  equations ( B 6 1 )  

defined  by  equations ( B 6 1 )  

defined  by  equations ( B 6 1 )  

defined  by  equation  (C8a) 

shear  strain 

shear  strain  in  plate  elements 01, 12, 23 
respectively 

computed  from  equation ( B 2 3 )  and ( B 3 2 ) ;  
representable  by  equations ( B 4 6 )  through 
(B49)  when R1, R2, ..., Rg are  complex 

complex  conjugates of y B C D  19 yl, yl, y: respectively 

complex  conjugates of y5, y5, y5 , YE respectively 

defined  by  equations (C29)  

B C D  
5 

defined  by  equations (D24)  

longitudinal  strain 

longitudinal  strain  in  plate  elements 01, 12, 23 
respectively 
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defined by equations  (B2) 

angle  between  sides  of  corrugation  and  horizontal 
(see  fig. l(a)) 

9 

defined  by  equations  (B14)  through  (B18) 

Poisson's  ratio,  taken  as .3 for  numerical  work V 

defined by equations  (B40) 

defined by equation  (C37) 

defined  by  equation  (D32) 

cross-sectional  normal  stress U 

cross-sectional  normal  stresses  (functions  of z )  
along  junctions @ and @ respectively 

extreme-fiber  bending  stresses  (functions  of z )  
at  junctions @ and @ respectively,  resulting 
from  frame  bending  of  the  cross  sections 

1 I 

middle-surface  shear  stress T 

middle-surface  shear  stresses  in  plate  elements 
01,  12, 23 respectively 

T T T 01' 12' 23 

T '  T' T' 01' 12' 23 extreme-fiber  shear  stresses  due  to  twisting  of 
the  plate  elements 01,  12,  23  respectively 

rate  of  twist 9 

rate  of  twist  of  plate  elements 01,  12,  23 
respectively 

factor  in  shear-stiffness  equations  (29)  and 
(B63a);  defined  by  equation  (B63b) 

factor  in  equation  (C42)  for  shear  stiffness; 
defined  by  equation  (C43) 

.-. 
J, factor  in  equation  (D38)  for  shear  stiffness; 

defined  by  equation  (D39) 

R relative  shearing  stiffness,  i.e.  the  ratio  of 
shear  stiffness  of  the  actual  corrugation  to  that 
of  an  identical  corrugation  with  uniform  middle- 
surf  ace  shear s&;.rain .. 



ANALYSIS 

The  plate  is  assumed  to  be  composed  of  infinitely  many  identical 
corrugations,  all  deforming  in  an  identical  way,  and  the  analysis  may 
therefore  be  based  on a single  corrugation.  The  form  of  the  corrugation 
is  shown  in  figure 1. A single  corrugation  is  considered  to  be  that  portion 
between  adjacent  trough  lines  (lines  labeled mn in  fig. 1). The  numbering 
system  for  the  salient  points  of  the  cross  section  of a single  corrugation 
is  shown  in  figure 3(a). The  notation  for  the  geometry  of  the  corrugation 
and  coordinate  systems  is  shown  in  figures 1 and 3(a). 

Considering a single  corrugation,  the  shearing  of  this  corrugation 
is  imagined  to  be  effected  by a longitudinal  shift  of  the  trodgh  line  at 
station @ through a distance  uo  in  the  positive-z  direction  and a 
similar  shift  of  the  trough  line  at  station @ in  the  negative-z  direction, 
as  shown  in  figure 3(b). Thus  the  total  shearing  displacement of one 
trough  line  with  respect  to  the  other  is  21.10 . The  end-points  of m e  
trough  lines  (points m and n in  fig.. 1) are  moved  only  longitudinally. 
However,  the  rest  of  the  points  of a trough  line  are  permitted  to  move 
both  longitudinally  and  laterally,  subject  to  certain  constraints  arising 
from  the  symmetry  of  the  corrugation  with  respect  to a vertical  plane 
through  the  crest  line  (m'n'  in  fig. 1) , the  antisymmetry  of  the  imposed 
displacements  with  respect  to  this  plane,  the  requirement  of  continuity 
between  adjacent  corrugations,  and  the  requirement  that  all  corrugations 
deform  identically.  These  considerations  and  requirements  lead  to  the 
following  constraints  on  the  deformations  of  the  trough  lines: 

(a)  The  longitudinal  strain  is  zero  everywhere  along a trough  line. 

(b) The  vertical  displacement  is  zero  everywhere  along a trough  line. 

(c)  The  trough  lines  at  stations @ and @ curve  into  identical 
shapes. 

Certain  deductions  can  also  be  made  regarding  the  mutual  internal 
reaction  acting  along  the  common  trough  line  between  two  adjacent 
corrugations.  These  lead  to  the  conclusion  that,  while  there  are an 
unknown  longitudinal  shear  flow  distribution  and  an  unknown  vertical  shear 
distribution  along  the  trough  lines  at  stations @ and @ , there  is no 
horizontal  running  tension  nor  any  bending  moment  transferred  from  one 
corrugation  to  the  next  across a trough  line. 

Figure 4 shows  schematically  the  type  of  linkage  system  that  can  be 
imagined  to  exist  along  the  edges  of  an  isolated  corrugation  in  order  that 
the  isolated  corrugation  satisfy  the  above  conditions  and  represent a 
single  one  of  the  infinitely  many  corrugations  of  the  corrugated  plate. 

Assumption  regarding  longitudinal  displacements. - The  longitudinal 
(z-wise)  displacements  at  stations @ and @ of  any  cross  section  are 
+uo and  -uo , as  already  discussed.  The  longitudinal  displacements of 
the  other  middle-surface  points  of  the  cross  section  are  assumed  to 
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vary   l i nea r ly   be tween   s t a t ions .  These longi tudina l   d i sp lacements  are 
shown i n   f i g u r e   3 ( b )  , which a l s o  shows t h e i r  assumed antisymmetrical  
na tu re   cons i s t en t   w i th   t he   an t i symmet r i ca l   na tu re   o f   t he   p re sec r ibed  
displacements a t  s t a t i o n s  @ and @ . There fo re   t he   l ong i tud ina l  
displacements of a l l  middle-surface  points  of the   cor ruga t ion  are def ined 
by  one  prescribed  displacement  parameter uo and two unknotm funct ions  
of z : ulcz)  and  u2(z) . If t h e   r e s u l t a n t   l o n g i t u d i n a l   s h e a r i n g   f o r c e  
F (see f i g .   l ( b ) )  i s  regard as prescr ibed  instead  of   uo , t h e  latter 
will become a n   a d d i t i o n a l  unknown. 

Assumptions  regarding  displacements i n   t h e   p l a n e  of   the  cross  
s e c t i o n .  - Especia l ly   near   the   ends ,   the   c ross   sec t ions   can   be   expec ted  
t o  undergo   s ign i f icant   f lexura l   deformat ions  i n  t h e i r  opm planes,  somewhat 
i n   t h e  manner  of a r i g i d - j o i n t e d  frame. Therefore   the  deformations  of  a 
c r o s s   s e c t i o n   i n  its own plane  w i l l  be assumed t o   b e   i n e x t e n s i o n a l ,  as i s  
done i n  frame analysis .   Certain  degrees   of   f reedom will b e  assumed f o r  
t he   d i sp l acemen t s   o f   s t a t ions  @ through @ , c o n s i s t e n t   w i t h   t h e  
expected  ant isymmetry  of   the  deformation  pat tern,   and  the  displacements  
be tween  s ta t ions  will b e  assumed i d e n t i c a l   w i t h   t h o s e  of the corresponding 
r igid- jointed  f rame,   hinged a t  s t a t i o n s  @ and @ . 

Three  degrees  of  freedom are s u f f i c i e n t   f o r   t h i s   p u r p o s e ,   a n d  
f i g u r e   3 ( c )  shows t h e   t h r e e   s e l e c t e d ,  as viewed  from  the  posit ive  end 
of  the  z-axis.  The f i r s t  two  of these   degrees  of freedom are t h e  same 
as employed i n   r e f e r e n c e  1. The t h i r d  i s  a r ig id-body  t rans la t ion ,  of 
amount VO(Z) , r equ i r ed   because   i n   t he   p re sen t   ana lys i s   t he   t rough   l i nes  
are pe rmi t t ed   t o   cu rve   i n   t he   ho r i zon ta l   (xz )   p l ane .  Thus the  displacements  
i n   t h e   p l a n e  of   the   c ross   sec t ion  are completely  def ined  by  three unknotm 
funct ions  of  z : vl(z) , v2 (z)  and  VO(Z) . 

Middle-surface  extensional strains.- Refe r r ing   t o   t he   fo rego ing  
assumptions  regarding  longi tudinal   d isplacements ,   and  using  the 
coord ina te   sys tem  of   f igure   3 (a) ,   the   longi tudina l   d i sp lacements  u 
f o r  a l l  poin ts   o f   the   middle   sur face   can   be   expressed  i n  terms of uo , 
ul(z)  and  u2(z) . The express ions   for   these   longi tudina l   d i sp lacements  
are g iven   i n   t he   s econd  column  of t a b l e  1. The corresponding  extensional 
s t r a i n s  E are obta ined   by   d i f fe ren t ia t ing   these   d i sp lacements   wi th  
r e s p e c t   t o  z , and   t he   r e su l t i ng   expres s ions  are g i v e n   i n   t h e  l as t  column 
o f   t ab l e  1. Because   t he   l ong i tud ina l   s t r a ins  are ant isymmetr ical   wi th  
r e s p e c t   t o   t h e  crest l i n e ,  it s u f f i c e s   t o   c o n s i d e r   e x p l i c i t l y   o n l y   t h e  
t h r e e   p l a t e   e l e m e n t s   l i s t e d   i n   t a b l e  1. 

TABLE 1. - LONGITUDINAL DISPLACEMENTS AND STRAINS 

P l a t e  element S t r a i n ,  E Displacement , u 

01 S 1 s du 

e dz - €1 
1 1  

uo + e ( u l  - uo> 

u1 + i;-(u2 - ul> 

"- 

S 
12 2 

- 
2s 

23 dz 
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MiddleLsurface  shear   s t ra ins .  - The s h e a r   s t r a i n s  y of the  middle  
su r face  of t he   p l a t e   e l emen t s  of the  corrugation,  obtained  from  both  the 
longi tudinal   d isplacements   and  the  displacements   in   the  plane of t h e  
c r o s s   s e c t i o n ,  are g i v e n   i n   t a b l e  2. It is seen   tha t   they  are constant  
across   the   wid th  of  any plate   e lement  (i .e. , independent of SI, s2  , and 
s3 ) , as a r e s u l t  of the   assumpt ions   tha t   u  varies l inear ly   between 
s t a t i o n s  and the   c ross -sec t iona l   deformat ion  is inextens iona l .  

TABLE 2. - SHEAR STRAINS 

P la t e   e l emen t  Shea r   s t r a in ,  y 

0 1  

12 
I 1 

23 "" 

3 

Rate of twist of t he   p l a t e   e l emen t s .  - I f   t he   co r ruga t ion   l eng th  
(2b) is s e v e r a l  times the p i t c h  (p),  i t  can   be   a rgued   tha t   the   to rs iona l  
s t r a i n   e n e r g y  w i l l  be  a small f r a c t i o n   o f   t h e   s t r a i n   e n e r g y  due t o   t h e  
fkxura l   ( f rame- l ike)   deformat ions  of t he  cross sect ions.*  Therefore ,  
i n  computing t h e   t o r s i o n a l   s t r a i n   e n e r g y  of a p la te   e lement ,  i t  is 
p r o b a b l y   s u f f i c i e n t l y   a c c u r a t e   t o  assume a constant  rate of twist across  
the  width of t he   e l emen t   r a the r   t han   t o   cons ide r   t he   de t a i l ed   va r i a t ion  of 
rate of t w i s t  ac ross   the   wid th .   This   cons tan t  rate of t w i s t  w i l l  be  taken 
as t h e   o v e r a l l  rate of t w i s t  corresponding  to   the  displacements  of t h e  
longitudinal  edges  of  the  plate  elemenc.  For  example,   the rate of twist 

of t he   p l a t e   e l emen t   01  w i l l  be   t aken  as z r  , in   accordance  with 

the  edge  displacements shown i n   f i g u r e  3 (c) f o r   t h i s   p l a t e   e l e m e n t .  The 
rates of t w i s t  $I o b t a i n e d   i n   t h i s  manner are g i v e n   i n   t a b l e  3. 

P I  

*The n u m e r i c a l   r e s u l t s  of r e fe rence  1 are cons is ten t   wi th   th i s   deduct ion .  
The same deduct ion is a r r i v e d  at i n   r e f e r e n c e  2 .  

~~~ ~~ ~~ . 



TABLE 3. - RATES OF TWIST 

Plate   e lement  Rate of twist, $ 

I O1 

12 

23 

Strain  enerpy components. - A s  i n   r e f e r e n c e  1, t h e  strain energy  of 
the   cor ruga t ion  is assumed t o  arise from the  fol lowing  four   sources:  
(a )   middle-sur face   ex tens ion   of   thb   p la te   e lements   in   the   longi tudina l  
d i rec t ion ,   (b)   middle-sur face   shear   o f   the   p la te .   e lements ,   (c )   twis t ing  
of the   p l a t e   e l emen t s ,  and  (d) frame-like bending   of   the   c ross   sec t ions .  
Expressions are developed  below f o r   t h e   d e n s i t y   ( i . e .   s t r a i n   e n e r g y   p e r  
un i t   l ength   o f   cor ruga t ion)   due   to   each   of   these   sources .   In   deve loping  
these  expressions,   use  is made of t h e  fact  t h a t   p l a t e   e l e m e n t s  34  and 45 
c o n t r i b u t e   t h e  same strain energy as p la te   e lements  1 2  and 01   r e spec t ive ly .  

(a)   Strain  energy  due  to   middle-surface  extension:  The s t r a i n  
energy ,   per   un i t   l ength  of c o r r u g a t i o n ,   d u e   t o   t h e   l o n g i t u d i n a l   s t r a i n s   o f  
the   middle   sur face  i s  

where E' is the  Young'smodulus  associated  with  longi tudinal   extension,  
€1, ~ 2 ~ ~ 3  are d e f i n e d   i n   t a b l e  1, and SI, 52, s3 are coordinate  shown 
i n  f i g u r e   3 ( a ) .  In  wr i t ing   equat ion   ( l ) ,   middle   sur face   normal  stresses 
in   t he   t r ansve r se   d i r ec t ion   have   been  assumed n e g l i g i b l e .  The prime  on 
t h e  Young's  modulus  symbol i s  a tracer t o   d i s t i n g u i s h   t h i s  Young's  modulus 
from  the Young's  modulus associated  with frame bending. 

Subs t i t u t ing   t he   expres s ions   fo r  €1, €2, and € 3  from t a b l e  1 and 
performing  the  integrat ions,   one  obtains  

'ext (2) 
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. . . . . . . . . . 

where 

= "E'te(1 +--) 1 k 
bll 3 

1 b12 = -g E'tk 

b22 = x E't(2k + f) 1 

(b) Strain  energy  due  to  middle-surface  shear:  The  strain  energy, 
per  unit  length  of  corrugation,  due  to  the  middle-surface  shear  strain is 

where G is the  shear  modulus  associated  with  middle-surface  shear  and 
y1, y2' y3 are  the  plate-element  shear  strains  given in table 2. Substituting 
for  the  strains  their  expressions  from  table 2, one  obtains 

Ush = c u + clp; + c u + 2c u u + 2c u u 2 2 
00 0 22 2 01 0 1 12 1 2 

av dv 

+ doouo dz O + dlOUl dz 0, 

dvl + d u - dvl + 

+ dllUl dz 21 2 dz 

dv 2 dv 2 
+ e* 00 (2) dz + eTl(2) + 

where 
t c = G -  oo e 

dv  dvo 1 dv2 
-+ 2eZ0 dz dz + 2e30 dz 

t t c~~ = G(T; + 2 F) 

c -  - 
11 

= -Gz  t 01 c =  12 
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dvO d u - "  20 2 dz 

dv2 
d22U2 dz 

dvO dvl  dv 2 + 2eT2 i2- dz 

t 
G $1 + e 

- G -  t k 



dO0 = 2Gt d10 = - 2Gt(l - case) 

d20 = 2Gt(l - cos8) dll = d22 = - 2Gt  sine 

dZ1 = 2Gt  sinO(1 - cod) 

eto = Gt(e + k COS e + T )  2 f  

e* = Gt  sin e(k  + 7 cos e )  2 f 2  
11 

e* = 7 Gtf  sin e 1 2 
22 

e* = - - Gt(2k + f)sinecose 1 
10 2 

e* = - -  
20 2 Gtf  sine 

e* = - Gtf  sin e cos8 1 2 
12  2 

(c)  Strain  energy  due  to  twisting  of  the  plate  elements: 
energy,  per  unit  length of corrugation,  due  to  twisting  of  the 
is 

\ 

The  strain 
plate  elements 

', 
where  G'  is  the  shear  modulus  associated  with  !torsion  (the  prime  being 
a  tracer  to  distinguish  it  from  the  shear  modulus G associated  with 
middle-surface  shear); J1, J2, J3 are  the  torsion  constants  of  plate 
elements 01, 12 and  23  respectively,  considered  as  bars of narrow  rectangular 
cross  section;  and $1, $2, $3 are  the  rates  of  twist  given  in  table  3. 
Substituting  the  expressions  from  table  3  for  the  ratks  of  twist  and 

J1 = - et J2 = - kt J3 = - ft 1 3  
3  3 

1 3   1 3  
3 

for  the  torsion  constants,  one  obtains 

dv  dv2 - 1 
ut" 

- 
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in  which 

- e = Gl[++- J 2J3 
22 k f2 

- J2 2J3 2 
e = G1( - cos0 - - sin  8cos0 12 k2 f2 

(d) Strain  energy  due  to  frame  bending  of  the  cross  sections: 
Considering  a  unit  length  of  corrugation  to  be  a  rigid-jointed  frame 
whose  joint  displacements  are  a  superposition  of  the  three  modes  shown 
in  figure 3(c), while  the  joints  are  permitted  to  rotate  freely,  one 
obtains  for  the  strain  energy  a  quadratic  expression  in v1 and  v2 . 
(vo is  absent  from  this  expression  because  it  represents  a  rigid  body 
translation.) 

The  derivation  of  this  expression  is  given  in  appendix A of  reference 
1 and  will  not  be  repeated  here.  In  that  derivation  a  parameter a is 
used  which  has the value 0 or 1 according  to  whether  joints @ and @ 
are  hinged  or  clamped.  Only  the  case a = 0 is  pertinent  to  the  present 
analysis.  Setting a equal  to  zero  gives  the  .following  expression  for 
the  strain  'nergy,  per  unit  length  of  corrugation,  due  to  frame-like 
bending  of f he  cross  sections: 

'b 
- 2 
- allvl + 2 a   v v   + a  v 2 12 1 2  22  2 (11) 

where 
r 

a 
l1 B e 

- A12 
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A12 = - 432 g(E + 3 T )  (2 r; + 3 i) e  e  e 
k k  

- 864(i;) (r; + 3 T )  (r; + 2 y) e 2 e   e e  e 

A2 3 
= - 1296 e e ( 2  + 3 T )  e - 288(:)’ e(15 r; e + 27 7) e k f  f 

- 1728(E)3 :(E + 2 T )  e 

The  symbol D appearing  in  equations  (12)  represents  the  frame 
flexural  stiffness of the  corrugation  per  unit  width of frame,  i.e.  per 
unit  length  of  corrugation.  A  detailed  discussion  of  the  symbol D has 
been  given  in  reference 1, where  it  is  concluded  that  an  appropriate 
value  for D is  the  plate  flexural  stiffness,  i.e. 

Et3 
12(1 - v2) 

D =  

where E and v are  Young‘s  modulus  and  Poisson’s  ratio,  respectively. 
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Total  strain energy. - The total  strain energy U -of a single 
corrugation can be obtained by integrating the sum of the foregoing 
strain energy densities .over the entire length of the corrugation. I.e., 

where UeXt, Ush,  UtW, ub are defined by equations (2), ( 5 ) ,  (9) and (11) 
respectively. 

Total potential energy. - The potential energy of the prescribed 
shearing forces F along the sides of a corrugation, whose  relative 
longitudinal displacement is 2% , equals -2Fu . Adding this to  the 
above strain energy U gives the total potentia?  energy  (TPE)  of a single 
corrugation as 

Minimization of the TPE. - The TPE as defined by equation (16) is a 
functional of uo, ul(z),  u2(z) vo(z), v~(z), v2(z) . In accordance 
with the  method of minimum total potential energy (ref. 3) the "best" 
values of these quantities will  be those which minimize the TPE. To 
obtain these "best" values,  the technique of variational calculus may 
be used  to form the  first variation of TPE due to variations in UO, ul(z), 
u2 (2) , vo (z) , v~(z), v2 (2) and equate it  to  zero. This will lead  to a 
system of field equations (primarily differential equations) and boundary 
conditions defining uo, U~(Z), . . . , v2 (2) . 

The detailed execution of this procedure is given  in appendix A. 
The resulting field equations, equations (A12)  and  (All)  of appendix A, 
are repeated here for convenience: 

u1 
2 d2u2 

dvO dvl 
bll 2 + b12 X - 3 d10 dz - 3 dll dz - C' u 11 1 - c12u2 coluo 

- - 
dz 

d2ul  d2u2 

dz dz b12 2 + b22 2 - C12U1 - c22u2 = 

"0 
2 

dul + 1. d 
eOO 10 dz 2 20 dz 

du 2 allvl - a12v2 = 0 

d2vo 2 d V 2  2 1 du 
e20 

- 
+ e12 dz2 d V 1 + e  -+-d 

22  dz2 2 22 dz - a v  12 1 - a22V2 = O 
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and 

2c  u b .+ col r”, uldz = F 00 0 

Different  sets  of  boundary  conditions  are  obtained  in  appendix A, 
depending on the  nature  of  the  end  attachments.  If  there  are  point 
attachments  at  the  ends  of  trough  lines  only  (fig.  2  (a))  the  boundary 
conditions  at z = fb are 1 

“ d’l du2 
dz - 0  Y 

- =  
dz 

vo = 0 (20) 

dvO dvl 
2e10 dz + 2ell dz + 2e12 dz dv2 + d  u + d  u = 0 11 1 21 2 

dv 0 2e - 
dv 1 

20  dz + 2e12 dz + 2e22 dz dv2 + d22u2 = 0 

If the  attachments  at  the  ends  of  the  trough  lines  are  wide  as  idealized 
in  figure 2(d),  it  is  only  necessary  to  replace  the  first of equations 
(21) by  the  condition 

v1 = 0 
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Finally,  if  the  attachments  are  as  shown  in  figure,2(b),  namely  point 
attachments  at  the  ends  of  both  the  crest  lines  and  the  trough  lines, 
the  boundary  conditions  are 

du 

dz l o ,  dz 
du2 - =  .- = 

v = o  0 

v case + v2 = o 1 

dv 

dz  dz  dz 
2(e10 - e20cose)- 0 + 2(ell - el2c0se)- dvl + 2(e12 - e22cose)- dv2 

+ d u + (d21 - d cos8)u2 = 0 11 1 22 

The  physical  meaning  of  these  boundary  conditions  is  discussed  in  appendix A.  

Solution  of  equations. - Essentially,  the  basic  solution  of  the  problem 
consists  of  solving  equations (17) for  u1(Z),  U7(z>,  Vo(Z),  Vl(z),  V2(Z) 
in  terms  of uo , subject  to  appropriate  set  of  goundary  conditions. m&- 
solution  for  ul(z)  is  then  substituted  in  equation (18), which  then  gives 
uo  in  terms  of F or F in  terms  of  uo . 

The  system of simultaneous  differential  equations (17) is  linear  with 
constant  coefficients,  and  it  can  therefore  be  solved  in a straight-forward 
manner.  The  full  details.of  the  solution  are  in  appendix B, and  .only  the 
main  features of the  solution  (those  needed  for  computational  purpose)  will 
be  cited.  here. 

The  numerical  realization  of  the  solution  requires  that  equation  (B20) 
be  solved  for  its  eight  non-zero  roots,  Rl, R2, ..., R8 . In  equation  (B20) 
c is  any  characteristic  length (c was  taken  equal  to  the  pitch p in  the 
subsequent  calculations)  and  the  coefficients kg,  k2, etc.  are  functions  of 
the  ratios  of  the  elastic  constants  and  of  the  parameters  defining  the  basic 
shape  of  the  cross  section,  i.e. 8, t/c,  e/c,  k/c  and  f/c . These 
coefficients  are  defined  by  equations  (B13).  Because  only  even  powers  of 
R appear  in  equation  (B20),  four  of  these  roots  are  the  zlegatives  of  the 
other  four,  as  stated  in  equations  (B21a). 
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For  most  cross-sectional  geometries  of  interest R1 through  Rg  are 
complex,  and  therefore  the  further  description  of  the  solution  will  pertain 
to  that  case.  For  a  description  of  the  solution  procedure in the  general 
case  the  reader  is  referred  to  appendix B. 

When R1 through  Rg  are  complex,  they  come in conjugate  pairs,  and 
therefore  four  of  them  have  the  representation  shown  in  equations  (B44) 
with U, V, X and Y real  numbers.  Equations (B44) and  (B21a)  provide  a 
complete  representation  of  all  eight  roots. 

With U, V, X and Y known,  the  displacement  ratios ul(z)/u0 , etc. 
can be computed from equations  (B50) in which r;l and 52 are  defined  by 
equations (B2); 5 1  and  52  are  defined  by  equations  (B40); P B,C,D,E 9 

QB,'SDsE SB,C,D,E and T 
Y ByCyD'E are  obtained  by  solving  equations  (B23) 

for j = 1 and 5 and  noting  equations  (B31)  and  (B46)  through  (B49);  and 
A1/uO , r4/uo , r5/u0 , A7/u0 , EIO/uO  are  obtained  by  solving  equations 
(B52),  (B53)  or  (B54),  depending  on  the  type  of  end  attachments. 

= - - 

Relationship  between F and u - Equations  (B50)  give  the  displacements 0' 
due  to a prescribed  value of uo , i.e.  a  prescribed  value  of  half  the 
relative  shearing  displacement  of  the  two  sides of a  corrugation.  For 
determining  the  displacements  produced  by  a  prescribed  shearing  force F , 
one  needs  the  relationship  between  F  and  uo . This  relationship  is  given 
by  equations  (B63)  when R1 through  Rg  are  complex.  The  symbols  sv , sy, n n  

etc.  in  equations  (B63b)  are  defined  by  equations  (B60). 

Equation  (B63a)  gives  the  overall  shearing  stiffness  F/2u0  of  a 
single  corrugation.  One  can  define  a  dimensionless  shearing  stiffness 
parameter 52 as  the  ratio  of  the  actual  shearing  stiffness  of a single 
corrugation  to  that  of  an  identical  corrugation  having  continuous  end 
attachment  producing  uniform  shear  strain  throughout  the  corrugation.  The 
uniform  shear  strain  of  the  latter  corrugation  due  to  the  relative  shearing 
displacement  21.10  of  its  sides  is  2uo  divided by the  developed  width 
p' = 2e + 2k + f . The  shear  force FI required  to  maintain  the  relative 
shearing  displacement  2uo  is  therefore Gt*2b-2u0/p1 , which  implies  the 
following  shear  stiffness  for  the  continuously  attached  corrugation: 

F' Gt 2b 
2u 
" " 

0 P' 

The  relative  shearing  stiffness  of  the  given  corrugation  is  defined as 
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Eliminating numerator and denominator of this expression via equations 
(B63a)  and  (27) respectively, one obtains 

n = P'JI 2e = (1 +k+LL)$ e 2 e  

Stresses. - With the displacements ul(z), u~(z), etc. determined, 
the stresses in  the corrugation can also be obtained. Expressions for 
the various stresses will  now  be given, again restricted to  the case  in 
which the  non-zero roots of the characteristic equation are complex. In 
order to avoid  lengthy equations, the following short-hand notations will 
be employed: 

E 

I 

A5 - cosh - Xb 

uO C 

.., E1O 
E1O -= q 

- 
f (z) sinh c sin c UZ VZ 
ss 

- 
fsc(z) E sinh cos - vz 

C 

- 
f (z) E cosh - sin c uz VZ 
cs C 

- 
f (2) E cosh  cos - vz 
cc C C 

I 

fss(z) E sinh - sin - x2 Yz 
C C 

.., 

f (2) E sinh - cos - x2 YZ 
sc C C 

- 
fcs (z) : cosh - sin - x2 YZ 

C C 

.., 
f ( z )  5 cosh - COS - x2 Yz 
cc C  C 
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% E cosh - Ub 
C 

% = cosh - xb 
C 

- 
T s  

L 

- c  u f - v i s  
(A4PC - AIQ ) + + (Alp 3. A4Q - c   - c .  cc 

cv cv 

- c  - c  x fss + - c  " C  x - fss + (A8S - A5T ) + (ASS + A8T ) 
C X cx 

- D  u Fss + v FCC u FCC - v zss - D  
5 (i4PD - AIQ ) cv + (i lPD + A4Q ) 

C U 

- - - - 
- D  x fss + - D  - D  x - fss + ( i8SD - A5T ) + (ASS + A8T ) 

X C C X 

- E  - E  u i, + v FCC u FCC - v Fss - E  
5 (A4P - AIQ ) + (AlpE + A4Q ) 

'v C U 

- - - - 
- E  - E  x fss + + (ASSE + i 8 T E )  x - fss + (A8S - A5T ) 

Tr C X 

The longitudinal  normal stresses u @ and u Q , along  junctions @ 
and @ ( see   f ig .   3 (a) )   are   g iven by 

dul and dz 

du 

"0 
= E' - 2 (34) 
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Substituting  for u1 and u2 their  expressions  (eqs.  (B50a)  and  (B50b))  gives 

- X f  + Y  fsc 
+ A8 c, 

cs - (35a) 
A 

- "0' UT - - B  u 7 + v fsc - B  
- E  (AlpB + A4Q 1 sc fcs + (A4PB - AIQ ) cs 
E'U 0 sr S U 

+ (ASSB + A8T - B  ) x fsc - fcs 3 ( i8SB - A5T - B  ) 
x fcs + fsc 

"x "x 
(35b) 

These  stresses  are  positive  if  tensile. 

The  middle-surface  shear  stresses  in  the  plate  elements  making  up  the 
corrugation  can  be  determined  from  the  shear  strains of table 2 and  the 
displacement  equations  (B50).  These  shear  stresses will be  denoted  by 
'01, '12 and '23 respectively.  The  following  expressions  are  obtained  for 
them: 

'12c - B  B cc 

0 TT 

f 
- 3  

Gu 3 52 - c1 + [AfP - 1) + i4Q 3" 

- 
f 

- 
f 

+ [i4(PB - 1) - AIQ B & ss + [A5 (SB - 1) + A8T ]- " B cc 

'v cx 
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... 
c 

... 
c - B BLcc - B - B'ss - 

+ (A5S + A8T )- + (ASS - A5T )- + 5 E } 
"x 5 2 10 

... - - 
+ v sine + Vlsinecose - Vo 2 

The  positive  sense  of 'c01 is  shown  in  figure  5.  The  positive  senses of 
the  other  two  shearing  stresses  are  the  same  as  that  of T~~ . 

The  extreme-fiber  shear  stresses  due  to  torsion  will  be  denoted  by 
T;~, 'li2 and ~ h s  for  plate  elements 01, 12  and  23  respectively.  They 
can  be  obtained  by  multiplying  the  rates of twist  in  table  3  by  G't 
(ref. 4) and  substituting  equations (B50) for  the  displacements.  The 
resulting  expressions  are 

T;2c t -  - 
- =  
G'u k 2  1 - -(v + v case) 

0 

T;3c - =  t -  2 - 
f 1  G'u - 2 -(v sin e - v2cose) 

0 

The  positive  sense  of ~ 6 1  is  shown  in  figure  5  as  an  example  to  indicate 
the  positive  senses  of  all  three  torsional  shearing  stresses. 

Due to  frame-like  deformation  of  the  cross  sections  transverse  bending 
moments  are  developed  which  vary  linearly  between  stations  and  are  zero  at 
stations @) and 0 . The  transverse  bending  moment  (per  unit  length  of 
corrugation)  at  any  station  other  than @ and 0 is  a  linear  function  of 
vl(z)  and  v2(z)  (vo  playing  no  role  because  it  represents  a  rigid-body 
translation  of  the  cross  section).  The  associated  extreme-fiber  bending  stress, 
obtained  by  multiplying  the  bending  moment  by  6/t2 , will  also  be  a  linear 
function  of v1 and  v2 . The  extreme-fiber  transverse  bending  stresses  at 

L 
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s t a t i o n s  @ and @ will!be  denoted  by 

c o n s i d e r e d   p o s i t i v e   i f   t h e y  are t e n s i l e   i n   t h e   l o w e r   f i b e r s  (see f f g .  5). 
Expres s ions   fo r   t hese  stresses i n  terms of v1 and  v2  can  be  obtained 
d i rec t ly   f rom  equat ions   (56)   o f   re fe rence  1 wi th   the   parameter  CY t h e r e i n  
set equa l  to zero.  The . r e su l t i ng   expres s ions  are 

. .  

"6 and "6 and w i l l  b e  

= -LC 1 
1 - v  2 e e  

- 

g21  822 

g31 g32 

- 

I- - 

where  vl/uo  and  v2/uo are now given by equat ions  (B50c)  and  (B50d), 

and t h e  g  matrix  elements are def ined  as fol lows:  
i j  . 

g2 1 
= $:pal + bl - (2a2 + b2)E  cos0 - (4a3 + 2b )= s i n  6 

3  f '3 

g22 = - l e  f - (2a2  + b 2 ) E  + (4a3 + 2b3)%  cose] - 3 ( ~ )  e 2  B k  

831 = - -(b - b2 'i; cos0 - 2b3 s i n  e) - 6(i) s i n  B 
3 e  e e 2  e 2  2 
B f  1 

with 

a = - 6(2 i ; +  e 3 ~ )  e 

a E - 12 F(E e e  + 3 7) e 

1 -  

2 

a E 12" e e  3 k f  

E 6 -  e bl 

b2 

b3 

k 

z - 6 3 2  E + 3) 

- 6 F ( 4  T; e + 3) 

I (39 1 



Spec ia l  cases. - The above   r e su l t s   app ly   t o   t he   gene ra l  case i n  which 
none  of  the  dimensions e, f , and k is z e r o   ( f i g .  6 (a)  ) . Analyses   for  
t h e   s p e c i a l  cases f = 0 ( f i g .  6 (b))  and e = 0 ( f i g .  6 (c ) )  are contained 
i n  appendixes C and D r e spec t ive ly .  In  these  appendixes  only  the  end 
conditions  of  f igure  2(a)  needed  consideration.  Those  of  f igure  2(b) are 
equivalent   to   cont inuous  a t tachment  when e o r  f approaches  zero, 
because  of   the  resul t ing  complete   suppression  of   the  deformation of t h e  
e n d   c r o s s   s e c t i o n s   i n   t h e i r  own p lanes .  The end  condi t ions  of   f igure  2(d)  
are s imi l a r ly   equ iva len t   t o   con t inuous   a t t achmen t   i f  f approaches  zero, 
o r   t o   t h o s e   o f   f i g u r e  2 ( a )   i f  ,e approaches  zero. 

The main r e s u l t s  from  appendixes C and D w i l l  now b e   c i t e d .  

The s p e c i a l  case f = 0 l e a d s   t o  a s ix th   deg ree   ( r a the r   t han  a t en th  
deg ree )   cha rac t e r i s t i c   equa t ion ,   (C19) ,   w i th   s ix   roo t s   i n   t he   fo rm (C23) 
and  (C24). The numerical  computation  of  the  four  non-zero  roots  can  be 
done  by means of  the  quadratic  formula.   With-the-roots  determined,  the 
re la t ionship   be tween  the   a rb i t ra ry   cons tan t  ( A i ,  Dj, and 6:) can  be 
obtained  from  equations (C28) and  (C29).  Equations  (C39),  with Kl, X,, 

and Ab defined  by  (C40),   then  give  the  displacements  ul(z),  v ~ ( z )  and 
Vo(z) . Equations (C42) and (C43) g i v e   t h e   b a s i c   s h e a r i n g   s t i f f n e s s ,  and 
equat ions (C45) through (C49) g ive   the  stresses. 

The s p e c i a l  case e = 0 a l s o   l e a d s   t o  a s:xth deg ree   cha rac t e r i s t i c  
equation,  (D14),   which  has  six  roots (R1, ..., R 6 )  w i th   t he   p rope r t i e s  
shown i n   e q u a t i o n s  (D18) and  (D19). The four   non-zero  roots   can  be  easi ly  
determined  f rom  the  quadrat ic   factor   of   equat ion (D14).  With_the  roots 
known, the   r e l a t ionsh ip   be tween   t he   a rb i t r a ry   cons t an t s  (B  D. and E - )  
can  be  obtained  from  equations  (D21), (D23) and  (D24).  Equations  (D32), 
wi th  Bf, B;, and B6 def ined by (D35) , then  give  the  displacements u2 (2) , 
v ~ ( z ) ,  and  vo(z) . Equations (D38) and (D40) g ive   t he   abso lu t e   shea r ing  
s t i f f n e s s  a n d   t h e   r e l a t i v e   s h e a r i n g   s t i f f n e s s   r e s p e c t i v e l y ,  and equat ions 
(D41) through (D45) g ive   the  stresses. 

j y  3 

NUMERICAL RESULTS AND DISCUSSION 

The foregoing   ana lys i s  was used  to   determine  numerical   resul ts  on 
s h e a r   s t i f f n e s s ,  stresses and   deforva t ionsfor   se lec ted   c ross -sec t iona l  
geometries  and  end-attachment  conditions.   Poisson's  ratio v w a s  taken 
as 0.3,  G was taken as E/[2(1 + v ) ]  , and  no d i s t i n c t i o n  w a s  made 
between E and E '  , o r  G and G '  . In   o rde r   t o   keep   t he  number of 
computations  within  reasonable  bounds,   the  numerical   studies were l imi t ed  
t o   t h e  case of the   so-ca l led   symmetr ica l   cor ruga t ion ,   tha t  is  the  case i n  
which  the  trough  and  the crest  plate   e lements   have  equal   width  (2e = f ) .  

The n u m e r i c a l   r e s u l t s  were obtained by means of the   equat ions   d i scussed  
in   the  previous  sect ion.   For   determining  the  non-zero  roots  of the  charac- 
t e r i s t ic  equation  (B20),   subroutine PgLRT of t h e  IBM 360 S c i e n t i f i c  
Subroutine  Package was employed.  This  subroutine  can  handle complex as 
wel l  as rea l  r o o t s .  The c h a r a c t e r i s t i c   l e n g t h  c was taken   equal   to   the  
p i t c h  p . 
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For  the  sake  of  maximum  generality  the  .stiffness,  stresses,  and. 
deformations  are  represented  by  dimensionless  parameters;  For a given 
basic  shape  of  cross-sectional  centerline - i.e.,  for  given  values  of 
h/p,  e/p  and  f/p,  there  are  two  additional  dimensionless  parameters  needed 
to  define  completely  the  geometry  of  the  corrugation  (except  for  its 
absolute  size).  The  most  obvious  choices  for  these  parameters  are  b/p 
(semi-length  divided  by  pitch)  and  t/p  (thickness  divided  by  -pitch). It 
was  found,  however,  that  the  use  of  (b/p)*  (t/p)3l2  is  preferable  to 
b/p  alone  as  the  choice  for  the  first  parameter;  for  then  the  dimensionless 
stiffness,  stresses  and  deformations  turn  out  to  be  relatively  insensitive 
to  the  second  parameter,  t/p . A similar  result  was  observed  in  the  case 
of  trough  lines  held  straight  (ref.  1),  but in  xhat  case  bt/p2  was  the 
significant  parameter  corresponding  to  (b/p)  (t/p)3/2  of  the  present  case. 

Shear  stiffness. - Figures 7 through 9 give  the  basic  numerical  results 
for  shear  stiffness. The results  are  given  in  terms of the  relative  shear 
stiffness  parameter 51 , defined  as  the  ratio  of  the  absolute  shear  st.iffness 
F/2u0  of  the  actual  corrugation  to  that  of  an  identical  corrugation  with 
continuous  end  attachment  producing a state  of  uniform  shear  (eq. (27)). 
To convert  the  relative  shear  stiffness R to the  absolute  shear  stiffness 
F/2uo , it  is  only  necessary to multiply R by 2 Gtb/p' , in  accordance 
with  equations (28) and  (27).  That  is 

F Gt 2b 52 = - =  Gtb - 52 
2u 

0 P' e + k + y f  
1 

In  these  figures R is  given  as a function of (b/p) (t/p) 3/2 
for  the  following  range  of  cross-sectional  geometries: 

h/p - - .1, .2, . 3 ,  , 4 ,  .5 

f /p  (=2e/p) = . I, -2 ,  . 3 ,  .5 

t/p = .005 and .015 

Figure 7 is for  the  case  of  point  attachments  at  the  ends  of  the 
trough  lines  only  (fig. 2 (a)) , figure 8 for  the  case of point  attachments 
at  t.he  ends of both  the  crest  lines  and  the  trough  lines  (fig. 2 (b)) , and 
figure 9 for  the  case  of  wide  attachments  at  the  ends  of  the  trough  lines 
only  (fig. 2(d)). 

Figures 10, 11 and  12  present  the  same  kind of information  as  figure 
7,  8 and 9 respectively,  but  use  log-log  scales  rather  than  semi-log 
scales  in  order  to  show  more  clearly  the  relationship  between R and 
(b/p) (t/~)~/~ in  the  regions  of  very  low R (close  to  zero)  and  very 
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high S2 ( c lose   t o   un i ty ) .   I n   f i gu res   10 ,  11 and  12  the  curves  generally 
have a kink a t  R = .5 . To t h e   l e f t  of   the   kink  each  curve  gives  s1 as 
a function  of  (b/p).(t/p)3/2 t o   t h e   r i g h t  of t he   k ink  i t  g ives  1 - s1 
as a func t ion   of   (b /p>( t /131~3~.  

The range   of .   geometr ica l   parameters   covered   in   f igures   10 ,  11 and 12 
is as follows : 

h/p - - . 2  and .4 

f /p(=  2e/p)  = .l, . 2 ,  .3, .5 

f o r   t / p  = .005 and  .015 ; and 

h/p = .2  and .4  

f /p(=  2e/p)  = .2, .3, .5 

f o r   t / p  = .050 . 
The c u r v e s   f o r   t / p  = .005  and  .015 dupl ica te   the   in format ion   g iven  

i n   p a r t s   ( b )  and  (d)  of  figures 7 ,  8 and 9.  However the   curves   for  
t / p  = .050 give  information which is  n o t   c o n t a i n e d   i n   f i g u r e s  7 ,  8 and 9.  

The closeness  of t h e   s o l i d  and  non-solid  curves i n   f i g u r e s  7 through 
12 shows t h a t  R is  v i r t u a l l y  a func t ion  of (b/p)*(t/p)3/2  alone,  i .e .  
r e l a t i v e l y   i n s e n s i t i v e   t o   t / p  , excep t   i n   t he   r eg ion  of very low 
(perhaps  impractically low) values  of  (b/p)(t /p)3/2 . 

Comparison of f i g u r e s  7 and 8 (or 10 and 11) shows t h a t  a s i g n i f i c a n t  
increase  of shea r   s t i f fnes s   r e su l t s   f rom  hav ing   po in t   a t t achmen t s   a t   t he  
ends of t h e  crest l i nes   i n   add i t ion   t o   po in t   a t t achmen t s  a t  the  ends of 
the   t rough  l ines .   ( In   the   case  of t r o u g h   l i n e s   h e l d   s t r a i g h t   ( r e f .  1) t h e  
inc rease   o f   s t i f fnes s   due   t o   t he   add i t iona l  set of attachments w a s  much 
less s i g n i f i c a n t . )  

Comparison  of f i g u r e s  7 and 9 (or  10 and 12) shows t h a t  a much l a r g e r  
i nc rease   o f   shea r   s t i f fnes s  is obtained by changing  from  point  attachments 
to   wide  a t tachments   a t   the   ends of t he   t rough   l i nes .   Th i s   i nc rease  is 
also  an  upper  l i m i t  t o   t he   i nc rease   t ha t   can   be   expec ted  as a r e s u l t  
o f   one-s ided   in te r fe rence ,   l ike   tha t  shown i n   f i g u r e  3 of   reference 5 
(also  reproduced as f i g u r e  5 of r e f .   l ) ,  between  the  troughs  and  the end 
member t o  which  they are at tached.  

As is t o   b e   e x p e c t e d ,   f i g u r e s  7 to   12 show t h a t  , a l l  o ther   th ings  
remaining  constant ,   an  increase  of  h o r  f w i l l  l e a d   t o  a reduct ion  of 
t h e   r e l a t i v e   s h e a r   s t i f f n e s s  S2 . Since  increasing h o r  f implies  
increase  of  the  developed  width  p '  , equation  (41) shows t h a t   t h e  
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abso lu te   shea r   s t i f fnes s   F /2u0  w i l l  experience an even grea te r   percentage  
reduct ion   than   the  relative s h e a r   s t i f f n e s s  R . 

It is of i n t e r e s t   t o  compare t h e   s h e a r   s t i f f n e s s   o b t a i n e d  i n  t h e  
present  case w i t h   t h a t   o b t a i n e d   i n   t h e  case of  trough lines h e l d   s t r a i g h t  
( r e f .   1 ) .   F igu re  13, 14  and 15 present   such a comparison  for a p a r t i c u l a r  
shape of c ros s - sec t iona l   cen te r l ine   (h /p  = f / p  = 2e/p = .2 )  and  two 
values   of   thickness   parameter :   t /p  = .005 and  .020. I n   t h e s e   f i g u r e s  R 
is  p l o t t e d  as a func t ion   of   the   l ength- to-p i tch   ra t io   (2b /p) .  The dashed 
curves are f o r  t h e  case of  t rough   l i nes   he ld   s t r a igh t ,   t he   so l id   cu rves  
fo r   t rough   l i nes   pe rmi t t ed   t o   cu rve .  It is s e e n   t h a t   t h e   s h e a r   s t i f f n e s s  
i n   t h e  la t ter  case i s  apprec iab ly   lower   than   in   the   former ,   except   for   the  
v e r y   s h o r t  and  very  long  corrugat ions  ( i .e .   very small o r   ve ry   l a rge   va lues  
of 2b/p)  and f o r   t h e   c a s e  of  wide  attachments a t  the  ends of the  t rough 
l i n e s   ( f i g .   1 5 ) .  The lower ing   of   the   s t i f fness   due   to   a l lowing   the   t rough 
l i n e s   t o   c u r v e  i s  more  pronounced f o r   t h e   t h i n n e r   c o r r u g a t i o n   ( t / p  = .005) 
t h a n   f o r   t h e   t h i c k e r   o n e   ( t / p  = .020) .  

The above-discussed  differences  in  R , between  the case of  trough. 
l i n e s   h e l d   s t r a i g h t  and   t rough  l ines   permi t ted   to   curve ,   sugges t   tha t  
analyses  which make the   s imp l i fy ing   a s sumpt ion   t ha t   t he   t rough   l i nes  
(along  with a l l  o the r   gene ra to r s )   r ema in   s t r a igh t*   ( e .g . ,   r e f s .  6 ,  7 
and 2), may b e   a p p r e c i a b l y   i n   e r r o r   f o r  some ranges  of  geometries i f   t h e  
p la te   does   no t   ac tua l ly   have  some e x t e r n a l   c o n s t r a i n t  which fo rces   t he  
t rough   l i nes   t o   r ema in   s t r a igh t .  

Displacement  and stress p a t t e r n s   f o r  a p a r t i c u l a r  geometry. - The 
manner i n  which the  displacements  and stresses vary  along  the  length  of 
the  corrugat ion  for   one  par t icular   geometry i s  shown in   f i gu res   16 ,   17  
and 18, one  f igure  for   each of the  three  end-at tachment   condi t ions  considered 
i n   t h e   p r e s e n t   a n a l y s i s .  The geometry i s  def ined by the  fol lowing  numerical  
values  : 

h/p  = . 4  

f / p  = 2e/p = . 4  

t / p  = .015 

These  imply a length- to-pi tch  ra t io ,   2b/p , of  approximately  21.8  and a 
0 value  of 760. Those q u a n t i t i e s   s e l e c t e d   f o r   p l o t t i n g   i n   f i g u r e s   1 6 ,  

*The assumption  of  straightness of the   genera tors  i s  usua l ly   p resent  
i m p l i c i t l y  as a by-product  of  the  assumption  of  inextensional  deformation 
of the  middle   surface.  
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1 7  and 18 are   dimensionless   measures   of   the   longi tudinal   d isplacements  
u1  and  u2;  the  displacements vo, VI and  v2 i n   t h e   p l a n e  of t h e ' c r o s s  
sect ion;   the  middle-surface  shear  stresses  TO^, ~ 1 2  and ~ 2 3 ;   t h e  extreme- 
f i b e r   t o r s i o n a l   s h e a r  stresses T~)I,T& and -& ; the   longi tudina l   normal  
stresses and u 2 a t  s t a t i o n s  1 and 2 and the   t r ahsve r se  
extreme-fibe "9 stresse Q u and u a t  s t a t i o n s  @ and @ due t o  frame- 
l ike   bending   of   the   c ross   sec t ions .  

These  f igures  show a number of t h ings ,   t he  main  one  being  that 
stresses and  deformations are f a r  from  uniform  along  the  length of t h e  
corrugat ion - i.e., "end ef fec ts"   due   to   the   d i%cre te   na ture  of the  end 
at tachments   can  penetrate   an  appreciable   dis tance  in   toward  the  central  
por t ion  of the   cor ruga t ion .  These f i g u r e s   a l s o   i n d i c a t e   t h a t   t h e   m a j o r  
stresses are l i k e l y   t o   b e   b e n d i n g  stresses associated  with  frame  bending 
of t h e  end c r o s s   s e c t i o n s .  The peaking of t h e  '01 shear  stress near  
t he   end ,   t o  a v a l u e  much higher   than i t s  ave rage   va lue ,   i nd ica t e s   t ha t  
loca l   buckl ing  of the   t rough  p la te   e lement   due   to   shear   near   the  end  of 
the   cor ruga t ion  may need to   be   cons idered   in   the   p ropor t ion ing  of t h e  
corrugat ion.  The longi tudina l   normal  stresses u @ and a@ , though 
smal le r   than   the  maximum normal stress due   to   f lexure  of t he   c ros s  
s e c t i o n ,  are much l a rge r   t han   t he   l ong i tud ina l  stresses ob ta ined   i n   t he  
case of t r o u g h   l i n e s   h e l d   s t r a i g h t   ( r e f .   1 ) ,  and  they  therefore show t h a t  
the  assumption of i nex tens ib l e   gene ra to r s  would b e  less v a l i d   i n   t h e  
present  case  than i t  would b e   i n   t h e  case of re ference  1. Due t o   t h e  
longi tudina l   normal  stresses "a= 0, a@, u g ,  "0 = - a@, "0 = 

- (J @ , and u @  = 0 a t  junc t ions  @ through @ , t h e   c r e s t  and  trough 
- 

p l a t e  elements are i n  a s t a t e  of  bending i n   t h e i r  own planes and t h e   i n c l i n e d  
p la te   e lements  may b e   i n  a s ta te  of combined compression and bending i n  
t h e i r  own planes.   Figures   16,  1 7  and 18 show t h a t   t h e s e  stresses reach 
peak  values   near   (but   not   a t )   the   ends.   Local   buckl ing  due  to  them may 
a l s o   b e  a f ac to r   r equ i r ing   cons ide ra t ion   i n   t he   des ign  of the  corrugat ion.  
The graphs of V O ,  v 1  and  v2 show tha t   the   d i sp lacements   in   the   p lane  of 
t he   c ros s   s ec t ion  are an  order  of magni tude  larger   than  the  longi tudinal  
displacements,  and t h e   n o n l i n e a r i t y  of these   g raphs   cont rad ic t s   the   f requent ly  
used  simplifying  assumption  that   the  generators of the  corrugation  remain 
s t r a i g h t   l i n e s .  

- 

Figure 1 7  provides a pa r t i a l   check  on the   cor rec tness  of t he   ana lys i s  
and   ca lcu la t ions .  With f = 2e  and  point  attachments a t   the   ends   o f   bo th  
t h e   c r e s t   l i n e s  and the   t rough  l ines ,an   addi t iona l   e lement  of symmetry is 
introduced  which,  on  physical  grounds,  should  lead  to  the  following 
c h a r a c t e r i s t i c s   f o r   t h e  stresses and  displacements: 

T 
0 1  23 0 1  23 12 

- - T = - T' T' = o  

u =  u - u  2 0 1  

v case + v = o 1 2 33 



(The condi t ions  Ti2 = 0 and  vlcose + v2 = 0 e x p r e s s   t h e   f a c t   t h a t   t h e  
inc l ined   p la te   e lements ,   o f   wid th  k , undergo   zero   ro ta t ion  a t  every 
cross   sect ion. . )   Examinat ion  of   f igure  17 shows t h a t  a l l  of  these  charac- 
teristics e x c e p t   t h e   f i r s t  (‘01 = ~ 2 3 )  are s a t i s f i e d   v e r y  w e l l  by t h e  
numer i ca l   r e su l t s .  The curves  of ‘01 and ‘23 , which  should  coincide, 
d i f f e r   i n   o r d i n a t e  by a few pe rcen t   i n   t he   r eg ion   z /b  = . 4  t o  1.0 . 
This  discrepancy may be  due t o  round-o f f   e r ro r s   i n   t he   r a the%  l eng thy  
c a l c u l a t i o n  of ‘23 . 

M a x i m u m  stresses. - Figures  16,  17  and 18 and similar r e s u l t s   ( n o t  
shown) fo r   o the r   geomet r i e s   p rov ided   an   i nd ica t ion  of  what  kinds  of 
stresses are s ign i f i can t   and   where   t he i r  maximums occur. These maximums 
were then computed f o r  a much l a rge r   r ange  of geometides ,   and  the  resul ts  
are p resen ted   i n   f i gu res   19 ,  20 and  21,  one  f igure  for  each of t h e   t h r e e  
kinds  of  end  conditions.   These  results were ob ta ined   fo r   t he  case t / p  = 
.015 ; however the  dimensionless  parameters used as o rd ina te   and   absc i s sa  
i n  each  graph were so s e l e c t e d  as t o  make the   curves   v i r tua l ly   independent  
of t / p  . Figures   19,  20 and 2 1  may the re fo re   be   u sed   fo r   va lues  of t / p  
other  than  .015. 

The range of geomet r i e s   cove red   i n   f i gu res   19  and 20 (point  at tachments 
a t  the  ends  of   the  t rough  l ines   only  or  a t  the  ends  of   both  the  t rough 
l ines   and   the  crest l i n e s )  is  as follows: 

h /p  = .1, .3,  .5 

f / p  = .1, . 2 ,  . 3 ,  .5 

Figure  21  (wide  attachments a t  the  ends  of   the   t rough  l ines)   covers   the 
same range  plus   h/p = .2 . 

The stress maximums s e l e c t e d   f o r   p l o t t i n g   i n   f i g u r e s   1 9  and 20 are 
the   end   va lues   (a t  z = b)  of tbe following stresses: (I) the  extreme- 
fiber  frame  bending stress u @  , (11) the  middle-surface  shear stress 

‘01 , and (111) the  magnitude  of  the maximu? resu l tan t   ex t reme-f iber   shear  
stress i n   p l a t e   e l e m e n t  01, i. e. I 1 + I ~ 0 1  I . 

For  the case of wide  attachments a t  the  ends of t he   t rough   l i nes ,  
the  frame  bending stress u was found t o  be   genera l ly   l a rger   than  

u 6 , and f i g u r e  2 1  the re f   o re   g ives   t he  end value  of u b  r a t h e r   t h a n  

u 6 . Simi lar ly ,  I T~~ I + I I can   be   l a rger   than  
f igu re   21   t he re fo re   g ives   t he   fo rmer  sum ins t ead   o f   t he  la t ter .  Because 
t h e r e  was found t o   b e   v e r y  l i t t l e  twis t ing  of plate   e lement  01 i n   t h e  
case of wide  attachments,   the l a t te r  sum essen t i a l ly   equa l s   a lone .  
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An extensive  survey  of   the  peak  values   of   the   longi tudinal   normal .  
stresses a @  and "8 would  have  required much more ca l cu la t ion   t han  
the   o the r  maximum str sses, because  the  values  of  z/b a t  which t h e  
peak   longi tudina l  stresses occur   cannot   be  specif ied  in   advance.   Therefore  
no g raph ica l   da t a  are p resen ted   fo r  them. The i s o l a t e d   n u m e r i c a l   r e s u l t s  
i n   t a b l e  4 may, however,  be  of some i n t e r e s t .   T a b l e  4 g i v e s ,   f o r   s e l e c t e d  
geometr ies   and  end  condi t ions, . the  peak  values  of the  dimensionless  
longi tudina l   normal  stress parameters  and  the  location  (z/b)  of  these 
peak  values. 

COMPARISON WITH EXPERIMENT AND WITH ROTHWELL'S THEORY 

Rothwell i n  re ference  2 c i tes  some experimental   data  on s h e a r   s t i f f n e s s  
of   t rapezoida l ly   cor ruga ted   p la tes   g iven  by H o r s f a l l   i n   r e f e r e n c e  8. The 
following  test-specimen  dimensions are given by Rothwell: h = .373" 
p = 3.55",  2e = f = .75", 8 = 20°, length = 2b = 18". The attachments 
consis ted  of   1/4- inch  diameter   bol ts  a t  the   ends   o f   bo th   the   t rough  l ines  
and  the crest l i n e s .  

The r e s u l t s  of the  experiments,  as given  by  Rothwell, are represented 
by t h e   c i r c l e s   i n   f i g u r e  22. The lower  curve i n   f i g u r e  22 is t h e   t h e o r e t i c a l  
p r e d i c t i o n  of the  present  theory,   assuming  point  at tachments a t  the  ends  of 
bo th   the  crest l i n e s  and the   t rough   l i nes  and  assuming  an  isotropic  material  
w i th   Po i s son ' s   r a t io  of 0.3. The upper  curve is t h e   t h e o r e t i c a l   p r e d i c t i o n  
given by Rothwell,  based on h i s   t h e o r y ,  which assumes inextens iona l  
deformation  for   the  middle   surface  ( thereby  implying  that   the   generators  
r e m a i n   s t r a i g h t   l i n e s )   b u t  makes an  approximate  correct ion  for   the  shear  
s t r a i n  of the  middle  surface.  

A s  i s  to   be   expec ted ,   the   p resent   theory ,   wi th  i ts  more degrees of 
f reedom,   p red ic t s   lower   shear   s t i f fnesses   than   Rothwel l ' s ,   bu t  i t  a l s o  
pred ic t s   lower   shear   s t i f fnesses   than   those   ob ta ined   exper imenta l ly .   This  
may be  d u e   t o   t h e   f i n i t e   w i d t h  of the   bo l t   heads   used   in   the  end attachments 
or   perhaps  to   interference  between  the  deformation of t h e   c r e s t  and trough 
plate   e lements  and the  member t o  which the  attachment i s  made. There is 
not  enough d e t a i l   i n   r e f e r e n c e  2 about  the  experiment  to  permit a more 
def in i te   assessment  of the  cause of the  discrepancy,  and t h e   o r i g i n a l  
source ,   re fe rence   8 ,  i s  no t   ava i l ab le  a t  the  time of t h i s   w r i t i n g .  

CONCLUDING REMARKS 

A t heo re t i ca l   ana lys i s   (based  on t h e  method  of minimum p o t e n t i a l  
energy)   and  numerical   resul ts   have  been  presented  for   the  e las t ic   shear ing 
of a t rapezoida l ly   cor ruga ted   p la te   wi th   d i scont inuous   a t tachments   a t   the  
ends of the   cor ruga t ions .  The present  work is an  extension of previous 
work ( r e f .  1) i n  which t h e  same problem was considered  but   with  the  t rough 
l i n e s  assumed t o   b e   h e l d   s t r a i g h t .  Thus the   p resent  work i s  more 
n e a r l y   a p p l i c a b l e   t o  a corrugated p la te  by i t s e l f ,   w h i l e   t h e   p r e v i o u s  
work was more p e r t i n e n t   t o  a co r ruga ted   p l a t e   f a s t ened   t o  a f l a t   p l a t e .  
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Three  aifferent  kinds  of  end-attachment  conditions  have  been  assumed 
in  the  present  work,  as  in  reference 1: (a) Point  attachments  at  the  ends 
of  'the  trough  lines  only,  (b)  point  attachments  at  the  ends  of  the  trough 
lines  -and  the  crest  lines;  and  (c)  wide  attachments  at  the  ends  of  the 
trough  lines  only,  the  width  of  the  attachment  being  the  full  width  of  the 
plate  element  at  the  trough. 

Based  on  the  analysis,  numerical  results  have  been  presented  for  the 
effective  shearing  stiffness  and  certain  maximum  stresses  for a w$de  range 
of geometries. A knowledge  of  these  quantities  is  felt  to  be  of  importance 
in  the  design  and  stress  analysis  of  trapezoidally  corrugated  plates 
intended  as  shear  webs. 

The  numerical  results  confirm  the  by  now  well knowxi  fact  that  the 
absence  of  continuous  attachment  at  the  ends  of  the  corrugations  can 
cause  a  marked  lowering  of  the  effective  shear'stiffness,  even  for 
corrugation  lengths  many  times  larger  than  the  pitch.  This  lowering  of  the 
shear  stiffness  results  from  the  large  frame-like  flexural  deformations  of 
the  cross  sections  permitted  by  the  discontinuous  end  attachment. Of the 
three  kinds  of  end  conditions  considered,  point  attachments  at  the  ends  of 
the  trough  lines  gave  the  lowest  shear  stiffness,  as  was  to  be  expected. 
A moderate  increase  in  stiffness  was  obtained  for  the  case  of  point 
attachments  at  the  ends  of  the  crest  lines  and  the  trough  lines,  but  a 
very  marked  increase  was  obtained  by  having  wide  attachments  at  the  ends 
of  the  trough  lines  only.  The  case  of  wide  attachments  represents  an 
upper  limit  to  the  constraint  provided  by  point  attachments  at  the  ends  of 
the  trough  lines  plus  one-sided  interference  between  the  troughs  and  the 
member  to  which  the  troughs  are  attached. 

Because  of  the  discreteness  of  the  end  attachments,  the  stresses  can 
be  quite  non-uniform  along  the  length  of  the  corrugation.  In  particular, 
the  middle-surface  shear  stress  in  the  trough  plate  element  was  observed 
to  peak  significantly  at  the  ends of the  corrugation.  most  significant 
stress,  from  the  point  of  view  of  magnitude,  was  found  to  be  an  extreme- 
fiber  bending  stress  associated  with  the  flexural  deformation  of  the  end 
cross  section.  However,  data  have  also  been  presented  for  the  maximum 
middle-surface  shear  stress  and  the  maximum  extreme-fiber  shear  stress 
(combination  of  middle-surface  and  torsional  shear  stress). A limited 
amount  of  numerical  data  (table 4 )  -was  presented  on  the  maximum  longitudinal 
normal  stresses.  The  longitudinal  normal  stresses  vanish  at  the  ends  but 
in  the  interior  reach  peak  values  which  may  exceed  the  maximum  shear  stress. 

For  a  given  basic  shape  of  cross-sectional  centerline,  two  additional 
dimensionless  parameters  are  required  to  completely  define  the  geometry  of 
the  corrugations  to  within  a  scale  factor,  e.g.  a  thickness  parameter  t/p 
and  a  length  parameter  2b/p . The  numerical  work  revealed,  however,  that 
if  a  certain  combination  of  length  and  thickness  were  used  as  one  of  the 
parameters,  then  the  dimensionless  shear  stiffness  and  dimensionless 
stresses  would  be  virtually  independent  of  the  second  parameter.  The 
combination  parameter  that  serves  this  purpose  was  found  to  be  (b/p)  (t/pI3i2. 
(The  analogous  parameter  when  trough  lines  are  held  straight  (ref. 1) was 
bt/p2 . I  
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Except' f o r   t h e   v e r y  small o r   ve ry   l a rge   l eng th - to -p i t ch   r a t io s  and 
e x c e p t   f o r   t h e  case of wide  attachments a s i g n i f i c a n t   d i f f e r e n c e   i n   s h e a r  
s t i f f n e s s  was found t o   e x i s t  between  the case of t r o u g h   l i n e s   h t l d   s t r a i g h t  
( r e f .  1) and the   p re sen t  c.ase of  trough  l ines  which are permit ted  to   culve.  
This   suggests   that   the   assumption  f requent ly  made (o r   imp l i ed )   i n   t he  
shear ing   ana lys i s  of co r ruga ted   p l a t e s ,   t ha t   t he   gene ra to r s   r ema in   s t r a igh t  
l i n e s .  may be   ques t ionakle  in some cases and f o r  some range of geometries.  

In   r e f e rence  1, i t  was f o u n d   t h a t   t h e   a n a l y t i c a l   r e s u l t s   t a k i n g   i n t o  
a c c o u n t   t h e   t o r s i o n a l   s t i f f n e s s  of t he   p l a t e   e l emen t s  making up the   cor ruga t ion  
were u n l y   v e r y   s l i g h t l y   d i f f e r e n t  f rom  those   ob ta ined   neglec t ing   the   to rs iona l  
s t i f f n e s s .   C a l c u l a t i o n s ,   t h e  results of whichahave  not  been  presented, show 
tna t   che  same phenomenon is t r u e   i n   t h e   p r e s e n t   c a s e ,   t h u s   t e n d i n g   t o   j u s t i f y  
the   s imp l i f i ed  manner i n  wh ich   t he   t o r s iona l   s t r a in   ene rgy  w a s  I n c l u d e d   i n  
t h e   t o t a l   p o t e n t i a l   e n e r g y   e x p r e s s i o n  - i.e. by the   u se  of  an average rate 
of twlst across   the  width  of   each  plate   e lement   ra ther   than  the  detai led 
pointwise rate of twist. 

Inasmuch as . t he   p re sen t   ana lys i s  is based  on  the method  of minimum 
potent ia l   energy ,   one .could  claim t h a t  i t  over estimates t h e   s h e a r .   s t i f f n e s s  
were it not   for   the  approximate  t reatment  o f  t h e   t o r s i o n a l   s t r a i n   e n e r g y  
and t h e  assumed absence of interaction  between  the  frame  bending moments 
and the  longi tudinal   curvatures .   Because of t h e s e   s i m p l i f i c a t i o n s  one  can 
on ly   c l a im  tha t   t he   shea r   s t i f fnes s  is probably  over-estimated. 

It would appear  that   worth-while  avenues of f u t u r e   a n a l y t i c a l  work on 
the   shear ing  of corrugated  plates   should  include  the  extension of t he  
present   approach   to   (a )   the  case of  one-sided  interference  between  the 
corrugat ion  ends and the  member t o  which the  ends are a t tached  and (b) t he  
case of c u r v i l i n e a r   ( e . g . ,   c i r c u l a r  arc) corrugat ion.  The shear ing  of 
the   c i rcu lar -a rc   cor ruga t ion   has   been   s tud ied  by McKerizie ( r e f .  6 ) ,  but  on 
t h e   b a s i s  of   the   assumpt ion   tha t   the   genera tors   remain   s t ra ight  and 
inex tens ib l e .  As already  noted,  such  an  assumption may no t   be   app ropr i a t e  
i n  a l l  cases. 
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where 

APPENDIX A 

VARIATION OF THE TPE 

Equation (16) i n  expanded’ form is 

2 du  du2 

TPE = 1 11 [%) dz + 2b12 1 + b22 (2 dz  f]dz 

-b. 

2 + c  u 2 + c   u 2 + 2 c   u u   + 2 c   u u ) d z  
11 1 22  2 0 1  0 1 12 1 2 

dv 
+ (doouo dz dvo + dlOul O + d20U2 dz dvo + dllul dvl 

+ d21U2 dz- dvl + d22u2 dz dv2) dz 

dv  dvo dv  dv 1 2 0  
dv  dv 

+ 2e10 dz dz + 2e20 dz dz + 2e12 2 dz -1 dz  dz 

b 

+ (allVl + 2a v v + a22v2 2 )dz - 2 F uo 
-b 12  1 2 
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- 
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e20 
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- 
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me first v a r i a t i o n  of t h e  TPE due t o   t h e  small v a r i a t i o n s  6110, 
6ul (2) , 6u2 (2 )  , 6vo ( z )  , 6vl (z) ,  6-12 (2) i n   t he   d i sp l acemen t s   uo ,   u l ( z ) ,  . . . , v2(z) is 

+ c12 1 2 (u 6u + u26ul)]dz 

dv  d(6v ) dvo O +-  
dz  dz 

+ 

[a11 1 1 12 1 2 v 6v + a  (v 6v + v26vl) + a v 6v  ]dz - 2F*6u0 22 2 2 
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Where  the  derivative  of  a  variation  appears  in  the  integrand of 
equation (A3) ,  integration  by  parts  will  transform  such  a  term so that 
the  integrand  involves  the  variation  itself,  rather  than the derivative 
of  the  variation,  and will also  introduce  boundary  terms.  Using  the 
first  term  as  an  example, 

-b dz  dz -b dz -b 

Reducing  all  integrands in this  fashion  wherever  possible,  and  utilizing 
the  boundary  condition 

which  applies  to  all  three  types  of  end  conditions  shown  in  figure 2 ,  
one  obtains 

d2u1  d2u2 
+ ( 3 1  - b12 -&T + c 01 u 0 + CllUl + C12U2 

1 
2 10 dz + 2 d 11 T)(Sul)dz  dz 

dv 
+"d - 

2 d u  2 d u  

dz 

1 1 0 + - d  - 
dv 

" 

b22 2 2 + c  12u1 + c22u2  2  20 dz 

+ - d  - 1 dvl + 1 d 
2  21 dz 2 22 2, dz  (6u2)dz 

du  du  d2v0  d2vl 2 
- 2 [+ d10 2 + + d20 2 + e  - + e  - + e %)(dvo)dz 

-b O0 dz2  lo dz2 2o dz 

2 
d"l 1 du 2 vo 

+ [ allVl + a12V2  dll dz 2 2 1  dz " - - d  - -  e -  '' dz2 

2 d2 
- e  -- v1 e A) (6vl)dz 

dz2  l2  dz2 
(equation  continued  on  next  page) 
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du2 
2 d vo d2vl 

fb [ a12V1  ,22 2 2 22 dz + a  v - -  l d  - - -  
12 TZ2- 

- 
e22 &)(6v21dA dz2 +. 2 [til 2 + b12 

dv 

dvl 
+ 2e12 dz 

b 

-b 

Equation (A5) is  valid  as  it  stands  for  the  case  in  which  there  are 
point  attachments  at  the  ends  of  the  trough  lines  only  (fig . 2 (a)). If 
the  attachment is one  of  the  other  two  types  shown  in  figure 2, equation 
(A5) must  be  modified  to  take  into  account  the  implied  constraints  on 
6vl  and  6v2  at z - +b . 

Thus,  if  there  are  wide  attachments  at  the  ends of the  trough  lines 
(fig.  2(d)),  it follows.  that 

and  the  next-to-the  last  term  in  equation (A5)  must  therefore  be  omitted. 
If  there  are  point  attachments  at  the  ends of the  crest  lines  as  well  as 
the  trough  lines  (fig. 2(b)), the  resulting  constraint  against  horizontal 
displacement  of  the  crest  attachment  point  is  expressible  as 

[ (vlsine)cose + v2sine - v~],,,~ = o  (A7 1 

Taking  into  account  equation (A4) and  considering  that  sine # 0 , this 
becomes 

(vlcose + v ) 2 z=+b = o  

or,  in  variational  form, 
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Thus,  for  the  type  of  end  attachment  shown  in  figure 2(b), 6v2  in  the 
last  term  of  equation (A5) should be replaced  by  -6vlcosB . The last 
two  terms  of  equation  (A5)  can  then  be  combined,  leading  to  the  following 
form  of  the  equation  for  6(TPE): 

b b 
G(TPE) = (6uo)*/ (...)dz + 2 / (...)(6ul)dz 

-b -b 

+ 2  f b  
(. . .) (6vl)dz + 2 (. . .) (6v2)dz I”, 

dv 0 dvl  dv2 
11 1 + 2ell dz + 2e12 dz + {[d u + d21u2 + 2e10 

dv 
0 dvl - d u +2e - [ 22 2 20 dz + 2e12 dz i b  

-b 

in  which  the  symbol (...) has  been  used  to  represent  terms  that  are 
identical  to  the  corresponding  terms  in  expression (A5). 

Differential  equations. - In  order  for  the  TPE  to  be a minimum, 
G(TPE)  must  vanish  for  all  possible  values  of  6u0  6u1,  6112, 6v0, 6v1, 
6v2  consistent  with  the  constraints. Thus the  coelficients  of  the  latter 
five  quantities  in  the  various  integrands  of  equation  (A5)  must  individually 
vanish,  as  well  as  the  entire  integral  coefficient of 6u0 . This leads  to 
the  following  system  of  one  integral  equation  and  five  differential 
equations,  which  apply  regardless  of  the  type  of end attachment: 

4~ U b + 2cO1 u d~ - 2F = 0 00 0 i”, 
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d u- 2 d u, 2 dv, . dv 

2 
u1 -b - - 

l2 dz2 
1 dvo 1 d v l + l d  - = O  dv2 

c12u1  22 2  2 20 dz 2 21 dz 2 22 dz + C  u + - d  -+-d 

1 dul + 1 d "d 2 10dz 2 2 0 d z  0 

du du2 
2 - -  'd -_ -  'd - - e  -- vo e --e d2v1 - =  d V 2  

2 

allvl " a12V2 2 11 dz 2 21 dz lo  dz2  l1 dz2 l2  dz2 

du 2  e -- d2v0  d2vl  d2v2 
a12V1 + a22V2 - + d22 dz - e - -  

2o dz2  l2  dz2 22 dz2 
e - =  0 

Boundary  conditions. - The  vanishing of G(TPE) also  .requires  that 
the  boundary  terms o f  the G(TPE) expression  vanish  identically  for  all 
variations  in VI, v2,  u1  and u2 at z = _+b consistent  with  the 
constraints.  Referring  to  equation  (A5) , which  applies  to  the  case  of 
point  attachments  at  the  ends of the  trough  lines  only,  it  is  seen  that 
this  requirement  leads  to  the  following  boundary  conditions: 

du  du 1 
bll dz + bi2 dz 2 = 0  

dul  du2 
b12 dz + b22 = 0 

d u + d  u + 2 e l 0 ~  dvO  dvl  dv 
11 1 21 2 + 2ell dz + 2e12 dz 2 = 0  

dv dv 0 d u + 2e20 1 dv2 
22 2 + 2e12 dz + 2e22 = 

1 

at z = -+b . Inasmuch  as  bllb_?? - b12  does  not  vanish,  the  first  two 
of  these  equations  may  be  replaced  by 

2 

du 

dz 
1 au2 - =  0 and - = dz 

44 



at  z = . f b  . Thus, the  complete  set of  boundary  conditions  corrsaponding 
t o   t h e  case of  point  atta.chments a t  the  ends  of   the   t rough  l ines   only 
( f ig .   2 (a) )   cons is t s   o f   equa t ions  (A131, (A14) and 

which is t h e   f i r s t  of  equations (A4). 

For   the case of  wide  attachments a t  the  ends  of   the   , t rough,   l ines  
( f ig .   2 (d ) ) ,   exp res s ion  (A5) app l i e s   bu t   w i th - the   nex t - to - the - l a s t  term 
excluded. A s  a r e s u l t ,   t h e   f i r s t  of  equations (A13) is non-existent,  
and the   cond i t ion  

is usebl i n  i ts  stead.  Otherwise  the  boundary  conditions are the  same as 
fo r   t he   p rev ious  case. 

For   t he   t h i rd  case, i n  which  there are point   a t tachments  a t  the  
ends  of  the crest l i n e s  as w e l l  as the   t rough   l i nes   ( f i g .   2 (b ) ) ,   equa t ion  
(A8) const i tutes   one  of   the  boundary  condi t ions,   and  equat ion (A15) a 
second. The remaining  three  boundary  condi t ions,   implied by the   vanish ing  
of the  boundary terms of  expression (AlO), are equat ions (A14) and  the 
following : 

dv d u + d21u2 + 2e10 0 dvl dv2 
11 1 + 2ell dz + 2e12 dz 

dvO dvl - d u + 2 e  - [ 22 2 20 dz + 2e12 dz (A17 1 

a t  z = f b  . 
Equations (A14) in   con junc t ion   w i th   t he   f ac t   t ha t   duo /dz  = 0 , are 

r e a d i l y   i n t e r p r e t e d   t o  mean tha t   t he   l ong i tud ina l   no rma l  stress a c t i n g  a t  
the  corrugat ion  ends  vanishes .  

Following  the  procedure  of  appendix B of   reference 1, equat ions (A131 
and (A17) can  be shown to   be   equ iva len t   t o   t he   r equ i r emen t   t ha t   ce r t a in  
e f f ec t ive   i n -p l ane   shea r s  a t  t h e   e n d i o f   t h e   p l a t e   e l e m e n t s   v a n i s h .  
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APPENDIX B 

SOLUTION OF THE EOUATIONS FOR BASIC UNKNOWNS 

Equations  (17)  and  (18) are t h e   f i e l d   e q u a t i o n s   o f   t h e   p h y s i c a l  
problem.  In   this   appendix  equat3ons  (17)  w i l l  b e   s o l v e d   f o r   u l ( z ) ,  
u 2 ( z ) ,   v o ( z ) ,   v ~ ( z )  and v g ( 2 )   i n  terms of uo , sub jec t   t o   boundary  
condi t ions  of   equat ions (19) ,. (20)   and  (21);   or   equat ions (191, (20) .  
(22)  and  the  second  of  equations  (21);  or equations  (23),   (24),  (25)’ 
and  (26). Then t h e   r e l a t i o n s h i p   b e t w e e n   t h e   s h e a r i n g   f o r c e  F and 
t h e   t o t a l   r e l a t i v e   s h e a r i n g   d i s p l a c e m e n t  21.10 of   one  s ide  of   the  
co r ruga t ion   w i th   r e spec t  t o  the  other   can  be  obtained  f rom  equat ion 
(18). Physical   arguments   can  be  used  to  show tha t   u1   and  u2 should 
be  even  funct ions  of  z and vo, VI and  v2 odd func t ions   o f  z . The 
subsequent work w i l l  b e   s i m p l i f i e d   b y   c o n s i d e r i n g   o n l y   t h a t   s o l u t i o n  
of   equa t ions   (17)   which   sa t i s f ies   these   condi t ions .  

P a r t i c u l a r   i n t e g r a l .  - A par t i cu la r   i n t eg ra l   o f   equa t ions   (17 )  
w i l l  be   sought   in   the  fol lowing  form,   consis tent   with  the  even-ness  
of  u1  and u2 and  the  oddness of vo, VI, v2 : 

u1 = cons tan t  , u2 = cons tan t  , vo = 0 , VI = 0 , v2 = 0 

For   th i s   form of  p a r t i c u l a r   i n t e g r a l   t h e  last three   o f   equa t ions   (17)  
are i d e n t i c a l l y   s a t i s f i e d   w h i l e   t h e   f i r s t  two r e d u c e   t o  

cllul 1 2  2 coluo + c u  = -  

C12U1 + c22u2 = 0 

whence 

u = 5 p 0  1 

u2 = C2Uo 

with 

c01c12 
5 ,  -= .-I 

- L  L 
k C 2 2  - c12 
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Thus  a  particular  solution  of  equations  (17)  is 

vo = 0 

v1 = o  

v2 = 0 

Characteristic  equation  for  complementary  solutions. - The  complete 
solution of .equations  (17)  consists of two  parts:  (i)  the  particular 
integral,  equations ( B 3 ) ,  and  (ii)  the  complementary  solutions,  i.e.  all 
the  linearly  independent  solutions  of  the  homogeneous  system  obtained  by 
setting  uo  equal  to  zero , Solutions  of  this  homogeneous  system  will 
first  be  sought  in  the  following  form: 

v = De rz 2 

Substituting  these  assumptions  in  equations (17)  with uo set  equal  to 
zero  leads  to  the  following  restrictions  on A ,  B, Cy D, E and  r : 

- 
2 b r  -c 2 

11 11 b12r  -c12 
- -  
2 11 'd r 

2  2 b r  -c12  b  r "c 12  22  22 2 21 l d  r " 

" 2' dllr - - 2' d21r 2 
all-ellr 

a12-e12r 0 2 
" 

2 22 'd r 

dlOr - - d r - elor 2 " 

2  20 

0 

" 

2 22 'd r 

2 
a12-e12r 

a22-e22r 
2 

2 
- e20r 

- 
- -  
2 10 l d  I 

2 20 'd I - -  

2 
- elor 

- e20r 

- eOOr 

2 

2 
- 

I .  

A 

B 

C 

D 

E 
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Thus, f o r  non-trival solutions o f . t h e  form of equa t ions  (B4), r must 
satisfy t h e   f o l l o w i n g   c h a r a c t e r i s t i c   e q u a t i o n :  

2  2 b r -cll b r -cI2 " ' d  r 0 " 11 1 2  2 11 2' d l O r  

2 2 b r -c12 b r -c 22  22 2 21  ' d  r " 12  
" 2' d22r 2' d20r 

" 

2' dllr - - 2' d21r 
2.  2 

" 
2 

all-ellr a12-e12r - elor 

a12-e12r a22-e22r - e20r 0 " 2' d22r 2.  2 2 

2' d l O r  
2 

" " 

2 20 d r - elor 2 
- e20r 

2 - eOOr 

= o  

Expand ing   t he   de t e rminan t   by   co fac to r s   based   upon   t he   f i f t h  column, 
mul t ip ly ing   th rough  by  -32 for convenience,   and  introducing  the short- 
hand  no ta t ion  

n 2 
a E a l l a22  - a12 

b s b  b 11 22 - b;2 

c = cllc22 - c;2 

n n 

e 5 elle22 - e L 

12  

n 

g i 2a  12e12 - a l le22  - a22e l l  

12  22 - a22d21 

n 

h s a  d 

n 

k - d  e - d  e 2 1  22  22 12  

n n 

f i Z b  c - b  c - b  c 12   12  11 22  22 11 m i d21e12 - d e 22 11 

n 

d E b  d 1 22 10 - b12d20 
n 

d2 = C12d20 - C22d10 
A 

d E 8 c  e 3 12  20 - 2d10d22 

d4 = Clld20 - C22d10 

ds e12e20 - =10e22 

a 

n 

d7 i 4a22b22 + 4 ~ ~ ~ e ~ ~  - d;2 

n 

d9 = 2d d - 2dlld20 - 8c e 1 0   2 1   1 2  10 

4% J 



n 

n Z b  d - b  d 1 1 2 - 1 0  11 20 

A 

n2 E Cl ld20  - C12d10 

* 

p1   e l l e20  - e10e12 

n c) 

n 

n3 : 2d d - 8c e 10 11 11 10 

,. 

n 

p3 4allb12 + 4c12ell - d d 11 21  

n4 = a22e10 - a12e20 
- 

n 

41  E 2 b  c - b  c - b  c 12  12 11 22 22 11 

A 

42 = 22  20  20 22 - d  e - d  e 

one  converts   equat ion (B6) t o  

A 

p6 ' b12d10 - b l ld20  

n 

p7 ' C12d20 - C22d10 

n 

43 11 2 1  12 11 S b  d - b  d 

n 

44 E 22 10 20 12 d e  - d e  

(k + k2r 2 + k4r4  + k6r  6 + k r 8 ) r 2  = 0 0 8 

where 

ko = 2e X + dlOAg - d X 

k2 = 2e X + d10A8 - d20h12 - 2e20A17 + 2e10A21 

k4 = 2e X + d10h7 - d20X11 - 2e20X16 + 2e10A20 

k6 = 2 e  h + d10A6 - d20h10 - 2e20A15 + 2e10X19 

k8 = 2eO0A1 - 2e20A14 + 2e10X18 

00 5 20 13 

00 4 

00 3 

00 2 
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with 

x1 

A ?  

x3 

I 4  

A6 

x7 

x 
8 

A9 

x 10 

A 12 

'13 

= 16be 
A A  

n n  A I  n A 

= 1 6 ( t g  + ef j + 4k(blld21 - 2b  d - 4blld22m 12 11 

n A   A n  A A  n A n A - 16(ab + ce + f g )  + 4bll(d21h - d 2 2 j )  + 4 ~ ~ ~ ( d ~ ~ m  - d21k) 

..A A A  A A CI 

= 16(af  + cg) + 4h(2c12dll - c d ) + 4(c  d j + a22c22d;l) 11 21 11 22 

= 16ac 
..A 

n.. n A A 

= 8edl 3. 8b (e k - e20m) + 8b22dlld5 12  10 

A A  ..A n A A A  

= 8gd + aed2 + 8b (e h - e20j ) + md 1 12  10 3 

A A  A n  A n  n n  n 

= 8ad + 8gd4 + j d 3  + hdg - 8d c d 
1 11 22 8 

= 8ad2 
A n  

,.A .. A A 

= 8enl + 8b ( e  k - e20m) + 8b12 11 d d  11 10 

+ kdg 
A A  

A A  A n  ,. A A n  A 

= 8en + 8gnl + 8b ( e  h - e20j ) + kn + 8 ~ ~ ~ e ~ ~ m  2 11 10 3 
A 

+ 8d 11 b 12 n 4 + 8dllc12(e22e10 - e12e20) 

A n  ..A A A A  A II 

= 8an + 8gn2 + 8c e j + hn3 - 8c d n + 2a  dL d 1 11 20 12 11 4 22 11 20 

= 8an 
A A  

2 

A 

SO 



A14 = 16bpl 

0. A 

+ 4b e p - 4d e d + 4dlle20(b22dll - b12d21) 12  20 3 11 12 1 

A18 = 16bd5 

+ 4b d (d e - d e ) - 4b22d10dlle22 1 2  10 21  22 22  1 2  

A 20 
= 16d5c + 16d q 8 1 + 4(C12d l l  --c 11 d 2 1  > q  2 

,. A A 

+ 4a d  q + 4 ~ ~ ~ d ~ ~ q ~  + 4b12d10h 22  20 3 

A 

+ d  d  d - 4a12blld20d22 10 11 7 

(B17) 

A21 = 16cn + 4hd4 + 4a22dllp7 4 
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From  equation  (B4)  it is evident  that  the  quantity r appearing  as 
the  unknown  in  the  characteristic  equation  (B12)  has  the  dimension  of 
(1ength)’l. For  computational  purposes  one  should  convert  the  characteristic 
equation  to  an  alternate  form  in  which  the  unknown is dimensionless. This can 
be  done  by  introducing  any  characteristic  length c (e.g., c could  be 
taken  equal to the  pitch p ) and  defining a dimensionless  variable R as 
f ollowa : 

R = cr (B19 1 

In  terns of R equation  (B12)  becomes 

’2 2 k4 4 6 k8 8 2 ( k o + T R  +“R +“R +-R)R = 0 
C 

4 6 8 
C C C 

The rQots  of  equation  (B12)  will  be  denoted  by rf~, r2, . . . , ‘10,  those 
of sqpdtion  (B20)  by R1,  R2, ..., R10,  and  these  two  sets  of  roots  have 
tha rollowing  relationship,  in  accordance  with  equation  (B19): 

R =  cr (j = 1,2,..  .,lo) 
j j 

(B19 ‘ ) 

m e  nature of the  roots  of  the  characteristic  equation. - Because 
equqLlon  (B20)  contains  only  even  powers  of R and  has Rz as a factor, 
the  fullowing  properties  can  be  postulated  for  the  Rj : 

R4 = -R 1 

Rg = -R2 

R8 = -R5 

Rg = 0 

R10 = 0 

R7 = -R6 

(B21a) 

(B21b) 

Examination  of  equation  (B20)  shows  that  for a given  cross-sectional 
shape (i.e. fixed  values of 0 ,  e/c, k/c, and  f/c ) and  fixed  ratios  of 
the  elastic  constants  to  each  other,  the  Rj  are  functions  of  t/c  only. 

The  non-zero  roots,  R1  through R8 , may  be  real  or  complex,  and  for 
most  geometries  of  interest  they  are  generally  complex.  In  that  case  the 
following  additional  properties  may  be  ascribed  to  the  Rj : 

R2 = R1*  R6 = R5* 

where R * denotes  the  complex  conjugate  of i Ri 
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Complementary s o l u t i o n s   a s s o c i a t e d   w i t h  R1, R Z 9  .... R8. - The 
value-nd E i n   e q u a t i o n s  (B4) a s soc ia t ed   w i th   t he  
par t icu lar   non-zero   roo t  ( j  = 1, 2, .. ., 8 )  w i l l  be  denoted  by 
A-J Bj , C j  , D j  , and E j  . e r e l a t i o n s h i p s   e x i s t i n g  among these  
f i v e   c o e f f i c i e n t s   c a n   b e   o b t a i n e d   b y   s u b s t i t u t i n g  1: = r j  i n t o   e q u a t i o n s  
(B5) and   so lv ing   t he  l as t  f o u r   o f   t h e s e   e q u a t i o n s   f o r   t h e   r a t i o s  of B, C 

D and E t o  A . These  equat ions  can  be  wri t ten as followp: 

r = 2  

L 

where 

Lll = - b R2 - 2 C* 
E’ * 
E 22 j E 22 

LI2 = - - l G d * R  - 
2 E   2 1 j  

L13 = - - - 2 E  2 2 j  

‘14 = - ” l G d * R  
2 E  2 0 j  

d * R  

1 

L22 a* [“) - [i ell E c ell j 
2 ** G’ t 

11 c + -[-I2 -* 1 R2 

L23 = a* 12 [L)2 c - 

4 
- E e** R2 

E 10 j 

-c* G - -b* E’ R 2 
E 12 E 12 j 

” l G d * R  
2 E  11j 

0 

” I G d * R  
2 E  l O j  

L34 = - - G e** R2 
E 20 f 

L44 = - - e** R 2  E 00 j 



with 

e - AI2 T; cos0 + 2A23 ' i ;~ e e  s i n  2 ecose ,- 2A13 sin2e]l 

a =  
* (c/e)' 

l2 12(1  - v )B 
2 2 [ A22 (e)2 i; cose - 4A 33 [e]2 T s i n  2 ecose 

1 -"A e e  2 2 e 12 E - i; T(COS e - s i n  e )  + 

* 3 
a = + 4A33[:)2 cos 2 8 - 

22 12(1 - v ) B  2A23 2 k f case] J 
* 
11 

* l k  
6 c  b12 

b22 

= " 

* 
= $[2 + f)  k 

C 
* c c  = - + -  11 e k  

C 
* C 

12 k 
- - - -  

* C C 
C = - + 2 -  

22 k f 

d21 = 2 sinO(1 - case) 
* 

d10 = -2(.1 - case) 
* 
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** e k 2 I f  
c c  2 c  eOO 

= - + - c o s  e + - -  

** 
ell = s i n  e[; + 

ip " sin2e 

5; cos2e) 

e 
** 
22 2 c  

e 
** 
10 = - 3 2  + :)sinecosB 

e "- s i n e  ** 
20 2 c  

** 
c " - 

e12 2 c  s in2ecose 

d 
cos e + 2 s i n  e) 2 c 4  

ell 

c 2  

* = L(c - 2 5 sin20 case 
e12 3 k  f 1 

The s o l u t i o n  of equat ions  (B23) w i l l  be  denoted BS follows: 

From t h e  last four   o f   equa t ions  (B5), i t  is s e e n   t h a t   i f  r is replaced  
by i t s  negat ive ,  B/A remains  unchanged  while CIA , D/A and E/A merely 
change  s ign.  From th is   p roper ty   and   equat ions  (B21a) it f o l l o w s   t h a t  
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B B  C C D D E E 
Y4 Y1 Y4 = -Y1 Y4 = -yl Y4 = -Y1 

By  summing  the  eight  solutions  of  the form of  equations (B4)  
corresponding  to r = r1 through r = r8 , expressing  each  exponential 
in  terms of hyperbolic  functions,  discarding  those  terms  not  having 
the  proper  even-ness  or  oddness  in z , and  taking  into  account 
equations  (B32),  one  arrives  at  the  following  part of the  complementary 
solution: 

* R z  * R z  * R z  
RIZ + A* cosh 7 + A  COS^ 7 + A cosh - 6 u1 = A1  cosh - 
C 3 5 7 C 

* D  RIZ R5Z * D R6Z R2Z + ~;y; sinh - + A y sinh - v2 = A y sinh y- + A*yD sinh - 1 1  3 2  C C 7 6  C 

RIZ 2 R z  * E  * E sinh - 
R z  R6 

0 C 3 2  C 7 6  C 
v = AYy: sinh - + A*yE  sinh c + A5y5 + A y  sinh- 

* * * *  
where A1, A3, A5, A7 are  certain  linear  combinations  of  the A ' s  and 

may  be  regarded  as  new  arbitrary  constants. 
j 

Complementary  solution  associated  with  the  root R = Rg = 0. - 
Substitution of r = rg = 0 into  equations (B5) gives  the  following 
relations  which  the  coefficients Ag,  Bg, ..., Eg must  satisfy: 

56 



- 
-C 11 12 "c 0 0 0 

-C 12 -=22 0 0 0 

0 0 all 12 O 

12 a22 O 

a 

0 0 a 

0 0 0 0 0 

. .  
0 

0 

0 

0 

0 
. -  

Since  cllcf2 - Ciz and  alla22 - ai2  are  not  zero,  these  equations 
have  the so ution 

Ag = Bg = Cg = Dg = 0 

Eg = indeterminate 

Substitution  of  these  values,  together  with  r = rg = 0 , into  equations 
(B4) gives  the  following  complementary  solution: 

- 
- u " V  = 2 1 2 

v = o  

v = E  0 9 

where E is  an  arbitrary  constant. 
9 

This  solution  gives vo even  in z rather  than  odd.  The  constant 
Eg may  therefore  be  equated  to  zero. Thus the  root R = Rg = 0 makes  no 
constribution  to  the  complementary  solutions. 

Additional  complementary-  solu_tion  not ofthe form  of  equations (B4). - 
The  presence  of  a  repeated  root  (see  eqs.  (B21b))  of  the  characteristic 
equation  indicates  that  there  exists  a  complementary  solution  that  is  not 
of  the  form  of  equations (B4). This  complementary  solution  can  be  found  by 
inspection  if  one  assumes  the  following  form  for it: 

~- 

ul = A1O 

v1 = CIOZ/C 

v2 = DIOz/c 

vo = E z/c 10 
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where A ~ o ,  B l o ,  . . . y  E10 are constants. Equations (B37) satisfy the 
symmetry  and antisymmetry requirements with respect to z . Substituting 
equations (B37)  into the original  differential equations (17) (with the 
uo term  omitted) leads to  the following conditions on A ~ o ,  B l o t  ...) E10 : 

-2c 11 

-2c12 

0 

0 

0 

a 10 
-2c12 
" 

C 

d20 
-2c22 
" 

C 

0 0 

0 

0 

dll 
" 

C 

d21 
" 

C 

0 

a 11 

a 12 

0 

d2 
" 

C 

0 

a 12  

a 22 

whence 

Cl0 - - D10 = 0 

E10 = indeterminate 

- 
*lo - < l E 1 O  

B1O = S2E10 

where 

- \C12d20 - C22d10 51 - 2 
2c(cllc22 - C12) 

*lo 

b10 

E 
1 0  

c l o  

d10 

c d  12 10 - 5 1 d 2 0  
n 

I .  

0 

3 

0 

0 

0 
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Thus  the  complementary  solution of the form of equations (B37) is 

u1 = SlElO 

u2 = SZE1O 

Y ' O  

v = o  2 

vo = E z/c 10 

where E is  an  arbitrary  constant. 10 
Complete  solution. - The  complete  solution  of  the  differential 

equations (17) (satisfying  the  symmetry  and  antisymmetry  requirements), 
obtained  by  adding  together  the  particular  integral ( B 3 )  and  the 
complementary  solutions (B33) and  (B41),  is 

* R1= * R z  * R5Z + A cosh - = 5 u + A cosh - + A3 cash - u1 1 0  1 C C 5 C 

* R z  + A cash - + 6 E 6 
7 C 1 10 

* B  RIZ * B R z  2 * B  R z  5 u2 = &.2~o + Alyl cash - + A3y2 cash - + A5y5 cash - 
C C C 

R z  
$. A;y: cosh - 6 

C + S2E10 

* C  RIZ * c 2 R z  5 * c  R6Z 

* D  RIZ R2Z * D 

R z  
v1 = A y sinh - + A y sinh - + A*yC sinh - + A7y6 sinh - 1 1  C 3 2  C 5 5  C C 

R z  
= A y sinh - + A*yD sinh - + A5y5 sinh c R5Z + A*yD sinh - 6 

1 1  C 3 2  C 7 6  C v2 

* E  R z  
= A y sinh - + A*yE sinh - + A*yE sinh c 1 R2Z  R5Z 

vO 1 1  C 3 2  C 5 5  

+ A*yE sinh - R6Z z 
7 6  C + E 1 O  c 
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The  unknown  constants Al, A3,  A5,  A7  and  E10  are  determined  in 
terms  of uo through  the  boundary-conditions,  which  are:  equations (19), 
(20)  and  (21)  for  the  case  of  point  attachments  at;  the  ends  of  the  trough 
lines  only;  (23)  through(26)  in  the  case  of  point  attachments  at  the  ends 
of the  trough  lines  and  the  crest  lines;  and  (19),  (20),  (22)  and the  
second  of  equations  (21) in the  case  of  wide  attachments  at  the  ends of  
the  trough  lirles . 

* * * *  

Substitution  of  the  expression  for  ul(z)  from  equations  (B42)  into 
equation (18) gives 

* 
A3 c 
uo R2 uo R5 

* 
(coo + COISl)b + col fi c1 sinh - C +" sinh-+-- R2b  A5 c, si& - R5b 

C C 

* 
+" A7 c sinh - R6b + elb) = - F 
uO R6 C uO 2u0 

With  A1/uO , etc.  determined  through  the  boundary  conditions,  equation 
(B43)  yields  the  effective  overall  shearing  stiffness  F/2uo  of a single 
corrugation. 

* 

Special  form  of  solution  when  R1  through  R8  are  complex. - The 
procedure  described  above  is  quite  general;  it  applies  regardless of 
whether  the  eight  pon-zero  roots  of  the  characteristic  equation  (B20) 
are  real  or  complex.  For  almost  all  cross-sectional  geometries  of 
interest,  however,  the  eight  non-zero  roots  of  this  equation  turn  out 
to be  complex. It is therefore  worth-while  to  investigate  the  special 
form  taken  on by equations  (B42)  and  the  boundary  condition  equations 
in  that  case. 

Considering  the  case  of  complex  roots,  and  taking  into  account 
equations  (B22),  one  can  represent R1,  R2, R5  and  R6  in  the  form 

R1 = U + iV  R5 = X + iY 

R2 = U - iV  R6 = X - iY 

where U, V, X and Y are  real  numbers.  Furthermore,  from  the  last  four 
equations  of  (B5)  it  is  evident  that  if r is  replaced  by  its  complex 
conjugate  then  B/A,  CIA,  D/A  and  E/A  are  also  changed to their  complex 
conjugates.  Applying  this  to  the  complex  conjugate  pairs r1, r2 and 
r5,  r6 , and  taking  into  account  equations  (B31),  it  follows  that 
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Thus  the y 
j 
BsC’DsE which  appear  in  equations (B42) have  the  following 

representation: 

yi = PC + iQc yg T Sc + ITC 
0347 1 

yc F PC - iQc 2 y: = Sc - ITC 

f; = PD + iQD y i  = SD + iT D 
(B48) 

yi = P - iQD D y: * SD - ITD 

E = P E  + iQE (: = SE + ITE 

0349 1 

yE = P - iQE E y: = SE - iT E 2 

where PB, QB, etc. are  real numbers. 

Substituting expressions (B44)  and  (B46)  through (B49) into 
equations (B42) gives the  following form of the complete  solution, 
applicable to  the  case in  which  the eight  non-zero  roots  of  the 
characteristic equation  are complex: 

- 
U,(Z> A1 vz A4 

uO  uO 

- E 

-a c1 + - cosh  cos - + - sinh $ sin - VZ 
C c u  0 C 

+ - Yz x2 E1O cosh cos - + - sinh - sin $ + - 
C C 51 uO uo uO 

(B50a) 
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(B50b) 

- - - - - 
VI (z) 

- 

- [ "4 PC - Qc]cosh uz s i n  - vz + [> - P c + - A4 Q c) s i n h  - uz CQS - vz 

uO uO uO C  C  C C uO 

(B50c) 

- - 
v2 (z) 

- - 
*4 pD D uz VZ [: D 2 D] UZ vz - = [T - ;Q)cosh c s i n  - +  - P + -  Q s i n h  - cos - 

- 

U 0 
C  C C 

Yz [: D 2 D] T cosh 5 s i n  - + - S + - T s i n h  - cos - xz YZ 
C  C C 

- - 

(B50d) 

- - - - 
Vo (2) 

- 

- = [; - A4 pE 5 Q)cosh  7 s i n  

E uz VZ 

uO C  C C 

E1O z +--  u c  0 

62 
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"a 

where AI, A4, A5 and AB are  new arbitrary  constants  related as  follows 
to  the  previous ones: 

- 

- * * IL * * 
A1 = AI + A3 A5 =G A5 + A7 

P * *  E * *  
A4 = i.(A1 - As) Aa = '(A5 - A7) 

These four,  arbitrary constants and  the  fifth  one,  E10 , are to be 
evaluated  from the boundary  condition  equations  listed in  the  previous 
section after  equations (B42). These lead  to  the  following sets of - 

Ub A4 
- =I= 

simultaneous equations  for  cosh -, - cosh - Ub 3 cosh -, xb 
uo c ' u  0 C "0 - - 

xb E1O - cosh - and - : 
uO C 

N1l 

N2 1 

N31 

N41 

N5  1 
- 

U 0 

N12 

N22 

N32 

N42 

N5 2 

N13 

N2 3 

N33 

N43 

N53 

N14 

N2  4 

N 
34 

N44 

N54 

- 
0 

0 

N35 

N45 

N55 
- 

- 

0 

0 

0 

N4 

N5 
" 

for  the  case of point attachments at the  ends of the  trough  lines  only 
(fig. 2 (a) 1 ; 
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The matrix  elements in these   equat ions  are def ined as follows: 

N1, U t u  cv - V & 

NI2 = U & + V t u  cv n n  

N13 = x t x  cy - Y s y  f i n  n 

N14 = X ŝ y + Y t x  cy 
n n  

n n  

N31 = P t u  cv - QE S^v E n n  

N32 = P sv + Q t u  cv h n  E n  n 

E n n   E n  N33 = s t t  cy - T s y  

E n  ~ n n  N34 = S s y  + T t x  cy 

N35 = b /c  

N22 = PBN12 + Q Nll 
B 

B (B55a) 

N2 3 = s N~~ - T ~ N ~ ~  

= SBN14 + TBN13 

1 (B55b) 

7 
N41 = d cv + d a + ell 

- n ' B ' C - D ' E  
11 21 1 + e12B1 + e l O B l  

- n n  
N42 = d t u  sv + d21a; + ell B + e12B2 + e l o ~ 2  - C - D  E 

11 

N45 = dll% + d2162 + e10 

N51 = d a + e12B1 + e2281 + e20B1 
- B ' C ' D ' E  
22 1 

' B ' C - D ' E  
N52 = d22a2  e12B2 + e22B2 + e20B2 

" B - C ' D ' E  
N53 = d a + e  8 + e  B +e20B3 22 3 12 3 22 3 

i (B55c) 

i (B55d) 

(equation  continued on next  page) 
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' B - C '  - E  N54 = d U + e12B4 + e BD -k e20B4 22 4 22 4 
- - 

N55 = d22E2 + =20 

N4 = - 5 l d l l  - 52d21 

.. 
N5 = - 52d22 

- c n n  c n  
N~~ = (s tu cv - T sc)cose + (s tu cV - T sv) ~ n n  ~n 

- 
N44 = (Sc E 3. T tu cv)cosB + (S sv + Q tu cv) c n n  D n  D n n  

- - 
N41 = P tu cv - Q sv C n n  c n  

=5 

$42 PC G + Q C  t^u c"v 
N43 = S t X  CY - T sy 

= C n  C n n  
N44 = S sy + T tx cy 

= C n n  C n  
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I 
~ 

where 

n sv E sin - vb 
C 

s^y sin - Yb 
C 

cv E cos - n vb 
C 

Yb c^y E cos - 
C 

n ub tu 2 tanh - 
C 

tx E tanh c r\ Xb 

and 

aB = P c v - Q B E s  B n  
1 

a; = P tu sv + QB ĉ v B n n  

aB = S cy - T tx sy B o  B n n  
3 

B a 4  = S tx  sy + T cy ~ n n  ~n 

8; = U(P cv - Q  tu  sv) - V(P tu  sv + Q cv) C n  C n n   C n n  C n  

B2 
= U(P tu sv + Qc 2) + V(P cv - Q tu sv) c n n  C n   C n n  

B 3  = X(S CY - T tx SY) - Y(S tx SY + T CY) 
C C n   C n n   C n n   C n  

6: = X ( S  tx  sy + T cy) + Y(S cy - T tx  sy) C n n   C n   C n   C n n  

8: = U(P cv - Q  tu  sv) - V(P tu sv + Q cv) ~n ~ n n  D n f i   D n  

f3: = U(P tu sv + QD c"v) + V(PD ĉ v - Q tu SV) D n n  ~n n 

(equation continued on next page) 



6: = X(S cy - T tx  sy) - Y(S tx  sy + T cy) D n   D n n  ~ n n  ~n 

D D n n  C n  D n  ~n n B4 = X(S tx SY + T CY) + Y(S CY - T tX SY) 

E E n   E n n   E n n   E n  B1 = U ( P  cv - Q tu SV) - V(P tu sv + Q CV) 

E E n   E n n   E n n   E n  B3 = x(s CY - T tx SY) - Y(S tx sy + T cy) 

and 

- 
d21 = sine(1 - cose) 

- 
e 20 2 c  

= - - -  sine I 

Substituting  expressions (B44) into (B43), and  making  use of (B51) and 
the  definltions  of  coo  and  co1  (eqs.  (6a) ) , one obtains  the  following 
formula  for  computing  the  shearing  stiffness  F/2u0 of a  single 
corrugation  in  the  case  of  the  non-zero  roots  being  complex: 

F  Gtb - =  
2u e -JI 
0 

(B63a) 

68 



where 

Elo - c p  cash .-) U b U t u c v + V G  
n n  

JI = l - C 1 - -  
uO '1 b uo u2 + v2 

XbXtx cy + Y s/4 f in 
+ - cash [: 1 x2 + Y2 

x2 + Y2 
(B63b) 

It  will  be  noted  that  in  equations  (B51),  (B52)  and  (B53)  the 
=. 

combinations - cosh ub , etc.  are  regarded  as  the  unknowns  rather  than 
U, C - V - 

- A1 , etc.  alone.  This  is  done  in  order to avoid  having  extremely  large 
uO 
matrix  elements  in  the  simultaneous  equatjons  when  b/c is large. 
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APPENDIX C 

SPECIAL  CASE: f = 0 

In  this  appendix  the  special  case f = 0 will  be  considered,  in 
which  junctions  lines @ and' @ coincide  and  form a line  of  points 
of inflection of the  cross  sections  (see  fig. 6 (b)) . Only  the  end- 
attachment  conditions  of  figure 2(a) (i.e.  point  attachments  at  the 
trough  line  ends  only)  need  be  considered  in.conjunction  with  the  case 
f = 0 , for  any of the  other  two  types of end  attachment  would  completely 
prevent  cross-sectional  deformation  and  therefore  be  tantamount  to 
continuous  attachment. 

Along  the  common  junction  line  formed by junction @ and @ when 
f = 0 the  longitudinal  deformation  must  vanish,  and  the  vertical 
displacement  must  also  vanish.  These  constraints  can  be  expressed  as 
follows : 

and 

The  variational  form  of  these  equations  is 

6u2 = 0 (C3) 

6v 1 = Gv2cos0/sin 2 e (C4) 

Introducing  the  foregoing  conditions  into  equation (A51 gives  the 
following  expression  for  the  first variation of the  TPE: 

F 
01 1 b ZC d - -)dz 

dV- I + c  u + I d  0 
+ coluo 11 1 2 10 zr -b 

+ - i 2 d 11 - dv2 dz -)(6ul)dz sin cos 2 

du 2 
- jb [+ d10 dz vo '+e - 

-b O0 dz2  dz 

(equation  corltinued  on  next  page) 
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1 dul cose 

I . ~  dz s i n  e 
- - d  -- 

2 

cose 

s i n  8 2 + a22)V2 

- (e - + 
lo sin2e  

cose 
2 
vo 

e 2 0 5 -  

+ [d u - + (el0 7 cos0  cos0 

l1 1 s i n 2 e   s i n  8 + e 2 0 p  

where 

eo0 = G t  (e  + kcos 0 + 5) 2 f  7 
e - - - -  

10 2 

e 5 Gtf   s ine 

Gt(2k + f ) s i n e  cos0 

- -  
20 

e ' '  = G t  s i n  2 8 (k + 5 cos 2 e )  + G'( 7 J1 + 2 J2 cos2e) 
11 e 

1 2 e" = - Gtf s i n  0 + GI-  
2 

k2 

J 

22 2 

e l '  = - 1 G t f  s i n  2 8 cos9 + G '  - J2 
12 2 k2 

A t  t h i s   s t age   t he   van i sh ing   o f  f has   not   yet   been  introduced 
in to   equa t ion  (C5). I n   o r d e r   t o   i n c o r p o r a t e   t h i s   c o n d i t i o n ,  f may be 
a l lowed  to   approach   zero   in  a l l  terms of  equation (C5) except  those 
assoc ia ted   wi th   f rame  bending ,   tha t  is a l l ,  a12  and  a22 . The s t r a i n  
energy of f rame  bending   for   the  case f = 0 cannot   be  obtained 
c o r r e c t l y  by l e t t i n g  f + 0 i n   t h e   e q u a t i o n s   f o r  a l l ,  a12 and  a22 - 
equations  (12)  and (13). The r e a s o n   f o r   t h i s  is t h a t   i f   c o n d i t i o n  
(C2) is f i r s t  imposed (as i t  has '   been)   to   p revent   ver t ica l   d i sp lacements  
of s t a t i o n s  @ and @ , the   subsequent   imposi t ion  of   the  condi t ion 
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f -t 0 w i l l  l ead   to   c lemping   (zero   ro ta t ion)  a t  t h e  vertex formed  by 
s t a t i o n s  @ and as they meet, r a t h e r .   t h a n   t o   t h e   c o n d i t i o n  of f r e e  
r o t a t i o n   t h e   p o i n t  of i n f l e c t i o n   ( z e r o  moment) which 
should  be  present  a t  t h i s   v e r t e x .   I n   o r d e r   t o   o b t a i n   c o r r e c t l y   t h e  
zero  moment cond i t ion   ex i s t ing  a t  t h e  vertex, f  must be   a l lowed  to  
a p p r o a c h   i n f i n i t y ,   r a t h e r   t h a n   z e r o ,   i n   t h o s e  terms of equat ion (C5) 
which arise from s t r a i n   e n e r g y  of  frame  bending,  namely a l l ,  a12, 
and  a22 . Doing t h i s ,  one   ob ta ins   the   fo l lowing   l imi t ing   va lues  of a l l ,  
a12, ane  a22 f o r   u s e   i n   e q u a t i o n  ((25): 

2 2  
all cos e - A12 ( ~ l c o s e ]  = all 

a + -  

where - e e 
k B 1 2  i"1 + -) 

Ihcorporat ing  the  above  l imit ing  values  of a l l ,  a l j ,  and a22 
in to   equa t ion  (C5) and l e t t i n g  f approach  zero  in   equat ions (C6) 
leads  to   the  fol lowing  ext j ress ion  for  6 (TPE) : 

(equation  continued on next page3 
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2 
dul - "0 + e' - " d2v2) ( 6vo)dz - 2 fb[+ d10 + e' - 

O0 dz2 lo sin28 dz2 

- COB 8 - cose - 2 

+ ta l l  a + 2a12 + a22)v2 

" cos 8 - cose - 2 

4 - (eil - + 2ei2 7 + e' )y d2v2]( dvg)dz 
s i n  8 s i n  8 22 dz 

where 

- 
e' = Gt(e + k cos e) 2 

00 

- 
e' = - Gtk s ine cos8 10 

e' = Gtk s i n  2 8 + G ' ( 7  J1 + 2 J2 cos 
11 e 

e! = G'  cose 12 k2 
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Differential  equations  and  boundary  conditions. - The  vanishing  of 
G(TPE), equation (Cg), provides  the  following  equations  governing ul(z), 
vo(z), v2 (2) and F : 

4c u 6 + 2CO1 00 0 i", u d z - 2 F  = 0 

- bll 2 I + c  u + 01 0 dz 

2 

O0 dz 
1 du - d vo 
"d '+el 7 
2 10 dz 

1 dvo 1 
'llUl 2 10 dz 2 11 + - d  -+-d 

2 - case v2 + eio 2 - sin 0 dz 2 
= o  

- dv2 
dz 

(2) = 0 
z=?b 

(dl1 - 
COS e - case dvo 
sin 8 sin 8 

u1 + 2ei0 - - 2 dz = o  

where \ 

- COS e case + 

2 - 
a' 3 a  - 22  sin4e + 2a12 2 sin 0 22 I 
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Besides  equations  (C13a) , the  boundary  condition 

vo(+b) = 0 

of the  general  case  applies  also  to  the  present  case. 

(C13b) 

Particular  solution of-the differential  equations. - A particular 
aolut- having  the  proper  parity  with  respect  to z 
is 

C 

u1 
i " O1 u 

O 

v2 = 0 1 (C15) 

vo = 0 I 
Complementary  solutions  of  exponential  form. - The  complementary 

solution,  which  is  the  solution of the  homogeneous  system  obtained  by 
omitting  the  term  coluo  from  equations  (C12),  is  first  assumed  in  the 
f o m  

vo = E'e rz J 
Substituting  these  expressions  into  equations  (C12)_with  the  uo  term 
excluded,  one  obtains  the  following  conditions  on A' , D' , E' and  r : 

1 - 
" ; dlOr 
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- 
which   l ead   t o   t he   fo l lowing   cha rac t e r i s t i c   equa t ion   fo r  r : 

-2  cose - l d  - r 
l1 s in2e  

bllr - c 11 
" 

cose - l d  - r - 2  ... cose -2 
" ai2 - ei2r 

sin20 
- e' - r 

lo sin20 

" 2' dlo; - el - - cos0 ;2 - '2 

lo s i n 2 @  
- ei0r 

Equations (C18) when expanded  becomes 

where 

f 

r -* 
+ [c:l(elo)2 + T ( d l l )  * 2e* 00 " 2 ~ l l ~ l o ~ l o ~ ~  * * '* 

I * -**  -* $ "* * -* 
k22 

= "- :+ ; blla22e00 - 7 e22[c11eoo - T(dlo) * 'I 
- E' G ) 2  -* 2 cos e 
k40 = AT, b:1[ii0 Sin2P - ( e l o ) ] T   s i n  0 

2 

I 

k4 2 
* '* "* 
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Denoting  the  roots  of  equation  (C19)  by  R1,  R2, ..., R6,  the  following 
properties  may be postulated  for  them: 

R2 = - R1 R4 = - Rg 

... .. 
R5 = R6 = 0 

I - " 

The  corresponding  values  of  r  will  be  denoted  by  rl,  r2, ..., r6 - 
Thus,  five  solutions'  of  the  homogeneous  system  having  the  form  of 

equations  (C16)  exist,  corresponding  to  the  five  different  roots of 
equation  (C19).  For  each  such-solution  the  relationships  which  must 
exist  among  the  coefficients A ' ,  Dl, and E '  can  be  obtained  by 
substituting  the-particular  value  of  r  into  equations (C17). Denoting 
by A ! ,  D!, and E! the  values  of  the  coefficients  associated  with  the 
partiha4 root rJ= C j  , the  following  relationships  are  implied  by  the 
last  two  of  equations (C17) for j = 1,2,3  or 4 : 

- d c(cr ) 2 10 j 
I 
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- - - 
S u b s t i t u t i n g   f o r  a$2y eho, eiOy e i 2 ,   d l 0  and d l 1   t h e i r   d e f i n i t i o n s  from 
equations  (C14), (C10) and (6b) one converts   equat ion (C25) t o  

- - 
L1l L12 

L12 L22 

where 

- 
e* R 2 

L22 - - - 
E O O j  

- 

The s o l u t i o n  of equat ions (C26) is 

where I (C29) 
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From equations (C29)  and  (C23)  it  is .evident  that 

'D -D -D 'D 'E 'E  'E  'E 
Y2 = - Yl s Y4 = -Y3 , Y p  = -Y1 9 Y4" - Y3 

~~r -J = 5 (r = r5 - 0) equations .(C17)' give 
" 

- - 
-C 11 0 0 

0 a' 0 22 

0 0 0 
- 

whence 

P 

E; 

' 

. -  

0 

0 

0 
" 

A; = D; = 0 , E; = indeterminate (C32) 

Summing  the-four  solutions of the form (C16) corresponding  to 
r = rl through r4 and making  use of equations (C28) and  (C30), one obtains 

- 
u1 

vO . .  

- 
1 1 1 1 

'E -E 'E -.E 
y1 - y 1  y 3  - y3 

- 
- R1 
A'e 1 

- -R - - 2  

I C  A;' 

- 2  

A'e 3 
- R3 c 

- 2  - -R3; 
A' e 4 . -  

(C33) 

Expressing the  exponential  functions  in terms of hyperbolic  functions and 
discarding  the terms which  do not have  the proper  symmetry (in the  case of 
u1) or  antisymmetry (in the case of v2 and VO) with respect  to z , one 
converts  equations (C33) to 



‘E - ‘E - R z  
v0 = y1 A1  Sinh - RIZ + y A sinh c 3 

c 3 3  

where x and X3 are  new  arbitrary  constants arising from  certain  linear 
combinations of the  previous ones. 

... From  equatlons (C32)  and  (C16) the  following  solution  corresponding 
to i = .r5 = 0 is  obtained: 

u1 = 0 

v2 = 0 

... 
vo = E; 

... 
Since vo = E; = constant is even in z , rather than odd, the constant 
2’ may be equated  to  zero. Thus the pertinent solution contributed  by 
tze root f = r5 = 0 is  identically  zero. 

Complementary solution  not of exponential form. - The  existence of 
a  repeated  root  (see eq.  (C24)) indicates that  the homogeneous  system  has 
an  additional  solution that is not  of  the  form of equations (C16). This 
additional  solution  can  be obtained  by inspection if one  postulates that 
it has  the  following form consistent  with  the evenness of u1  and  the 
oddness of v2 and vo 

.“ 

v = Di z/c 2 

.“ 

v = E” z/c 0 6 

80 



Substitution of this  assumption  into  equations (C12) with the uo term 
omitted shows that equations (C35) are indeed  a solution of the 
homogeneous system  provided  that 

where 
- 
6 - 2ccll/d10 (C37) 

Thus the  following  additional  solution of the homogeneous  system is 
ob tained : 

v2 = 0 

Complete  solution of the differential  equations (C12). - Summing 
the  particular integral (C15)  and the  various solutions (C34)  and  (C38) 
of the homogeneous  system, one  obtains  the  following 
of equations  (C12) having the  pertinent  symmetry  and 
>roperties : - 

C 
u = - -  'I. u + x cosh - RIZ + x cosh 
1 C,l 0 1 C 3 

'D r- 
R 1' 'D - R z  

v2 = y1 A1 sinh - + y3 A3 sinh - 3 
C  C 

complete solution 
antisymmetry 

-. 

R z  I 3 - 
C 

+ A i  

'E - R z  
RIZ '* si& c 3 + A; ; " z  v = y A sinh - 

0 1 1  C + y 3  3 

Evaluation of the  arbitrary  constants. - The  three arbitrary 
constants A1, A and A; can  be determined  from the boundary  conditions, 
equations (C13a)  and  (C13b). The following equations  are obtained which 
can be solved simultaneously for  the three constants: 

- " 

3 
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'11 p12 0 

'21  '22 / p2: 

'31 '32 p3: 

- 
A1 R 1  

uO 

A3 

uO 

.. 

- s i n h  - 
C 

I -. 
R 

- sinh - 3 
C 

- 
A: /uo 

:I 
'3 

where 

pll 

'12 = R3 
-. 

'21 = y 1  
-E 

'22 = y 3  
"E 

cos8 -{-De cos 2 8 + E ;* (L)2> 

+ iE e* x]\ co th  1 
'31 = f?l 7 s i n  8 + 2R  y1 ; - s i n  2 8 G 2 2 c  

lo s in28  C 

'D k cos  8 E 
(Lf) 

2 

s in  2 8 + 2 q y < - - + -  3  3 c sin20 ,G 22 c - 
+ GE,* q l c o t h  - R3E 

lo s i n  8 C 

cos 8 - - cos8 

s i n  8 p33 dZ1 2 e-" + 2et0  
s i n  8 

c o s e / s i n .  8- 2 

'3 d$l 1 + elk (C41b) 

82 



Relationship  between F and  uo. - With u,(z) determined  in 
terms of uo  (the  first  of  eqs.  (C39)),  equation  (Cll)  can  be  used  to 
7btain  the  following  relationship  between F and u - 0 .  

F Gtb -. - e  

2.uO 
-vJ e 

where 

A relative  shear  stiffness R can  be  defined  the  same  way  as  in  the 
general  case.  Equation  (29)  of  the  main  body of the  paper  applies  with 
f  set  equal  to  zero  and J, replaced  by $ . 

Stresses. - The  longitudinal  normal  stresses  are  identically  zero 
at s t a r @ ,  0 ,  @ and . The non-zero  longitudinal  normal 
stresses 00 along  junction  are  obtained  from  the  equation 

dul 
E‘ dz 

Eliminating  u1  through the  first of equations  (C39),  one  obtains  the 
following  expression  for the  dimensionless  stress  parameter 

- - 
O@‘ A1 - R z  A 3 -  - =  - R1  sinh - + - Rg sinh - 

- - 
1 R Z  3 

E’U 0 uO C U 0 C 

The dimensionless  middle-surface  shear  stresses, as obtained  from 
table  2  and  equations  (C39),  are 
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?0lC c 1  
GuO 

R z  - = " + '(E - i: R1)Cosh - 1 
e 1 + k/e uo C 

- - 
+"- A'(: i: R3)cosh 

uO C 

C 
R Z  

R  cote - - - 'E cos8  cosh - 
y3  3 k '3 3 I C  3 

where  the  subscripts 01 and 12 stand  for  the  plate  elements 01 and  12 
respectively. 

From  the  rates  of  twist  in  table 3 and  the  displacement  expressions 
(C39)  the  following  expressions  are  obtained  for  the  extreme-fiber  shearing 
stresses  due  to  the  twisting of plate  elements 01 and 12 respectively: 

T;2C - = "- 
G'u  W(z) 0 sin20 

The  frame  bending  moments  and  associated  extreme  fiber  bending 
stresses  are  zero  at  stations @ , 0 , @ and @ . Referring  to 
equations  (D44)  of  reference 1, one  obtains  the  following  dimensionless 
expression  for  the  extreme  fiber  transverse  bending  stresses 
along  junction 0 : 0 0 '  
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I 

i n  which u i s  posit ive  for  compression  in  the upper fibers, tension 

jn the  lower  f ibers   (see  f ig .  5) .  
Q1 



APPENDIX D 

SPECIAL CASE: e = 0 

Figure 6(c) shows  the  special  case  e = 0 , in  which  the  plate 
elements  at  the  troughs  are of zero  width,  with  the  result  that  the 
two  adjacent  inclined  plate  elements  meet  to  form  a  vertex  along  the 
trough  line. 

This  special  case  can  be  obtained  from  the  general  case  (appendix 
A) by  first  imposing  along  the  junction  line 0 the  same  displacement 
conditions  as  exist  along  the  junction  line @ , namely 

u,(z> = U 0 

v,(z) = 0 

and  introducing  these  conditions  (and  their  variational  forms  6ul - - 
6110, 6 ~ 1  = 0 ) into  the 6 (TPE) expression,  equation ( A 5 ) .  This 
will  eliminate  from  the G(TPE) those  terms  arising  from  longitudinal 
extension  and  twisting  of  plate  elements 01 and 45. 

(Dl) 

In  order  to  eliminate  the  terms  associated  with  middle-surface 
shearing  of  these  plate  elements,  the  condition  e + 0 should  then  be 
introduced  into  all  the  remaining  coefficients  except  those  associated 
with  the  strain  energy  of  frame  bending  (a  a 11’ 12’ a22)- 

The  condition  e -+ 0 will  not  lead  to  the  correct  strain  energy  of 
frame  bending  because  this  condition,  imposed  after  condition (DZ), 
implies  clamping  (zero  rotation)  rather  than  free  rotation  along  the 
trough  lines  in  the  limiting  case.  In  order  to  obtain  correctly  the 
zero  moment  condition  existing  along  the  trough  lines  the  condition 
e -+ m must  be  imposed  instead  in  those  terms  (all,  a12,  aZ2)  associated 
with  frame  bending  of  the  cross  sections. 

Applying  the  above  procedure  to  equation (A5) gives  the  following 
expression  for 6(TPE):  

6 (TPE) 

n 

1 dv 0 
12 0 22 2 2 20 dz + c  u + C  u + - d  

+ - d  1 
2 22 %)( dz 6u2)  dz 

(equation  continued  on  next  page) 
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" . 

where 

d2v0  d2v 
-b + &OO + e20 "$)6vO)d. dz 

2 2 d vb d V  
e -- e 2) 6v2 1 dz 
2o d z 2  22 dz2 

dvO 
b 

+ [(d22u2 + 2e20 dz -b 

- 
coo = Gt/k 

goo = Gt (k COS 8 + -) 2 f  
2 

+ 2 COS e) k 2 
- 

1 + 2 z  k 

Differential equations and boundary conditions. - From the vanishing 
of 6(TPE), equation (D3), the following equations governing  u2 , vo and 
v2 are  obtained: 

u2 
2 

dv2 - + c  u + C  u + - d  - d v o + A d  - I 0 1 
- b22  dz2 12 0 22 2 2 20 dz 2 22 dz 

1 du 
"d - 2  20 dz + @oo 

2 d2v d2v2 '+e - = o 
2o dz2 

(D8) 

2 
d'2 - vo v2 

2 

a22V2 ; d22 dz - " e -- e - = 0  
2o dz2 22 dz2 
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dv 
= o  

=+b 

Besides  equations  (D9a) , the  boundary  condition 

vo(fib) = 0 

of  the  general  case  applies  also  to  the  present  special  case. 

The  above  development  is  for  the  case  of  point  attachments  at  the  ends 
of  Lhe  trough  lines  only  (fig. 2 (a)  or  2 (d)) . When  e = 0 the  presence  of 
additional  attachments  at  the  ends  of  the  crest  lines  (fig. 2(b)) would 
completely  prevent  cross-sectional  deformation  and  therefore  be  tantamount 
to  continuous  attachment. 

Particular  solution  of  the  differential  equations. - A particular 
solution  of  equation  (D8)  having  the  proper  parity  with  respect  to z is 

C 
- 12 

u2 - " c *o 

vo = 
0 

22 

v2 = 0 I 
Complementary  solutions  of  exponential  form. - The  complementary 

solution,  which  is  the  solution  of  the  homogeneous  system  obtained  by 
omitting  the  term  c12uo  from  equations  (D8),  is  first  assumed  in 
the  form 

u2 = Be A f z  

,. 
A rz v = De 2 
,. 

v o  = Ee A rz 
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I 

Subs t i t u t ion   o f   t hese   expres s ions   i n to   equa t ions  (De) yi tb  the  12129 
term omi t t ed   l eads   t o   t he   fo l lowing   cond i t ions  on B, D, E and f : 

-"d 2 1 
2 22 

from  which arises the   fo l lowing   cha rac t e r i s t i c   equa t ion  f o r  
,. 
r :  

b22f2 - - d  1 
1 

-"d i 
2 20 - c22 2 22 

- -  - -2 - 2  
2 22 
' d  

a22 - e22r - e20r 

" 
-2  -2 

2 20 
' d  -e20r - eOOr 

Equation (D13) when expanded becomes 

5 0  

where 

A 

R cr 
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with 

,. 
Denoting  the  roots of equation (D14) by R1, R2, ..., R6, the following 
properties may be  postulated f o r  them: 

A , .  

n ,. 
R2 = - R1 

A n 

R4 = - Rg 

,.  ,. 
R5 = R6 = 0 

The corresponding  values of c w i l l  be  denoted by rl ,  r2, ..., c6 . n n  
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Thus, there exist five solutions of the homogeneous system having 
the form'of equations (D11). For each  suzh !olutio? the relationships 
which must exist  among the coefficients_ B, D,  and E can be obtained 
by sybst1tut;ng the specific  value of r into eguations (D12). Letting 
Bj,  Dj, and Ej denote the values of 8, 6 ,  and E associated with the 
root i: = $3 , the following relationships are implied by the last  two 
of equations (D12) for j = 1, 2,  3, 4 : .. 

Substituting for a22, e22, e20, COO, d22 and d20 their definitions from 
equations (D5),  (D6),  (6b)  and  (A2), one  converts equations (D20)  to 

- 

- 

where 

A G ^ 2  
E 20 j 'L12 

e - - e**R 
A 

L?2 
5 " ;**;2 

E 00 j 

The solution of equations (D21)  is 

1 
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where 

-E = - 1 -  R "(L G A  d* - d* ) /  (L11L22 - L12) A -  -2 
2 j E 11 20  12 11 

From  equations  (D24)  and  (D18)  it  is  evident  that 

For j 

whence 

= 5 (r = r,- = 0) 
A , .  

- 
-C 22 

0 

0 
- 

.. 
B5 

-, 

0 

- 
a 22 

0 

= D5 - - 

equations  (D12)  give -i5j B5 = I] 
A 

E5 

A 

0 , E = indeterminate 5 

Summing  the  four  solutions of the form of equations  (Dl11  corresponding 
to f = through f 4  and  making  use of equatius (D23)  and  (D25), one 
obLains 

1 1 1 1 
.- 

-E -E 
Y1 - y1 

-E ^E 
y3 - y3 

- - 
R1 c z 

Ble 

A 

A R3 c Z 

B e  3 
- 2  -R - 3 c  

B4e 
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Expressing  the  exponential  functions  in  terms  of  hyperbolic  functions, 
and  taking  into  account  the  fact  that  u2  must  be  even  in z , v2  and 
vo  odd  in z , one  converts  equations  (D28)  to 

A A 

R Z  
u2 BP COSL - RIZ + B* cosh - 3 

C 3 C 

A A 

RIZ ^D R z  3 AD B* Binh - + y3 Bf Sinh c v2 - y1 1 C 

A A 

-E RIZ *E R Z  
v = y B* slnh 7 + y3 Bj sinh - 3 
0 1 1  C 

where B: and B3 are  new  arbitrary  constants  arising  from  certain  linear 
combinations of the  previous  ones. 

Fro?  equations  (D27)  and  (D11)  the  following  solution  corresponding 
to r = r5 = 0 is  obtained: 

u2 = 0 

v2 = 0 

A 

since  vo = E5 = constant is even  in z , rather  than  odd,  the  constant 
E5  may be equated to zero.  Thus  the  pertinent  solution  contributed  by 
the root r = r5 = 0 is  identically  zero. A n  

Complementary  solution  not of exponential  form. - The  existence  of 
a  repeated  root  (see  eq.  (D19))  indicates  that  the  homogeneous  system 
has  an  additional  solution  that is not of the form of equations  (D11). 
This  additional  solution  can  be  obtained  by  inspection  if  one  postulates 
that  it  has  the  following  form  consistent  with  the  evenness  of  u2  and 
the  oddness  of  v2  and vo : 

u2 = B6 

A 

v2 = D6z/c 

A 

v = E6Z/C 0 J 
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Substituting  this  assumption  into  the  system of differential  equations 
(D8) with  the  c12uo  term  omitted  shows  that  equations (D30) are  indeed 
a solution  of  the  homogeneous  system  provided  that 

fi6 = 0 

where 
n 

6 = - 2 c * c ~ ~ / ~ ~ ~  

Therefore  the  additional  solution  of  the  homogeneous  system  is 

u2 

v2 

vO 

Complete  solution of the  differential  equations (D8). - Summing the 
particular  solution  (D10)  and  the  various  solutions (D29) and (D33) of 
the  homogeneous  system,  one  obtains,,fhe  following  complete  solution  of  the 
differential  equations (D8) having  the  pertinent  symmetry  and  antisymmetry 
properties: 

n A 

C RIZ R z  A 

= " l2 u + B* cosh - + BS cash - 
22 

3 
u2 c o 1  C C + B6 

D̂ i,z -D i i z  v2 = y1 BZ sinh - + y3 BS sinh c 3 
C 

94 



Evaluation of the arbitrary constants. - The three arbitrary constants 
BT, Bq, and 86 can be determined from the boundary conditions , equations 
(59a)-and. (D9G). These boundary conditions lead to the  following equations 
defining B;, ~ f ,  and 66 : 

- 

Qll Q12 

Q21 Q22 

Q31  Q32 - 

0 

Q2 3 

433 - 

where 

BY A 

- sinh - 
C 

BS igb - sinh - 
uO C 

B6/U0 

E 

0 

0 

Q3 
" 

A 

Qll = R1 

Q12 = R3 
.. 

Q21 = y1 
^E 

Q22 = y3 
-E 

Q2, = b/c 

n 

G' t - 2 Q31 = {dPl + 2Gl[ (e** + - 7 ej2)y1 ,D + e;$ gl]lcoth E - 
22 G C 

Q3 = 1 + 2 T  

2 sine 
k 
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Relationship  between F and u . - With  u2(z) known i n  terms of 

s i p  between  the  shear ing  force F and t h e  relative shearing  dispiacement  

0 

2 ( t h e   f i r s t  of  eqs. ( P 3 4 , ) ) ,  equat ion (D7) y i e l d s   t h e   f o l l o w i n g   r e l a t i o n -  

2u0 : 

where 

F Gtb A -JI - =  
2u k 0 

A .-. 

- [ $ s i n h  --I7 R3b , c - u B6 
R3b 0 

Equation (D38) can  be  used  to compute t h e   o v e r a l l   s h e a r i n g   s t i f f n e s s  of 
a s ing le   co r ruga t ion .  

A r e l a t i v e   s h e a r i n g   s t i f f n e s s  R , t h e   r a t i o  of t h e   s h e a r i n g   s t i f f n e s s  
(D38) t o   t h a t  of t h e  same corrugat ion  with  cont inuous end  attachment 
producing  uniform  middle-surface  shear  strain  throughout  the  sheet,  
is  given  by 

Stresses. - The longi tudina l   normal  stresses are i d e n t i c a l l y   z e r o  a t  
stati-, @ , @ and @) . The non-vanishing  longitudinal  normal 
stresses u@ a long   j unc t ion   l i ne  0 , obta ined   f rom  the   s t ra ins  duZ/dz , 
are given  in  dimensionless  form  by 

"0' BT A 
i z  B 5 -  i i z  

- E  - R1 s i n h  1 + - R s i n h  - 3 
E'uo U C u 3  0 0 C 

The dimensionless  middle-surface  shear stresses, as obtained  from 
t a b l e  2 and equat ions (D34) , are given  by 
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. 
A A A 

R z  1' B* ,. 
cosh - + iE 3 R cosh 

C 3 u 0  3 C 

A A A 

B* R z  B* A 

+ E $ ]  + s i n e  [qy RI cosh - AD 3 R cosh - 
0 0 C + y 3 u 0  3 C 

where   the   subscr ip ts   12   and   23   represent   the   p la te   e lements  1 2  and  23 
respec t ive ly .  

(D42) 

From t h e  rates of t w i s t  i n   t a b l e  3 and the  displacement  expressions 
(D34) the  fol lowing  expressions are obtained  for   the  extreme-f iber   shear ing 
stresses due to   the   twis t ing   o f   p la te   e lements   12   and   23   respec t ive ly :  

where A A 

- B* A R z  B* * R z  
W ( Z )  = jD 2 R1 cosh 3 AD R cosh - 

uo - + y 3 u  3 C C 
(D44) 

0 

The frame  bending moments and  associated  extreme  fiber  bending stresses 
are zero a t  s t a t i o n s  @ , 0 , @ and @ . From t h e   f i r s t  of  equations 
(E38) of   reference 1, one  obtains   the  fol lowing  dimensionless   expression fo r  
the   ex t reme  f iber   t ransverse   bending  stresses a long   j unc t ion   l i ne  0 : 
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(a) Cross section 

i 
. i  I 

n 

(b) Plan view 

Figure 1. - Configuration of trapezoidally corrugated  plate 
considered in  the present  analysis. 
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(a) Point  attachment  at  the  ends of the  trough  lines. 

" 
LJ 

(b) Point  attachment  at  the  ends of the  trough  lines  and  crest  lines. 

(9) Wide  attachment  at  ends of trough  lines  only. 

(d) Idealization of (c)  used  in  the  analysis:  Point  attachments  at 
the  ends of, the  trough  lines,  and  point  attachments  permitting 
longitudinal  sliding  at  the  junctions of the  trough  plate  elements 
and  the  inclined  plate  elements. 

Figure 2. - Types of attachment  considered  at  the  ends of the  corrugations. 
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(a) Diagram of cross  section. 

(b) Assumption regarding 
longitudinal displace- 
ment s . 

Component displacemenL 
modes for displacements 
in  the plane of the 
cross section 

Figure 3. - Diagrammatic representation of assumptions regarding displacements. 
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Figure 4 .  - Schematic .representation of a 
single corrugation. 
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Figure 5. - Sign  cdnvention for T ~ ~ ,  T' and u' . 
01 1 
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Figure 6 .  - General and special  cross-sectional  geometries 
considered i n  the analyses.  
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Figure 7. - Relative  shear  stiffness  for  the  case of point 
attachments at  the  ends of trough  line  only. 
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Figure 7. - Concluded. 
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Figure 8. - Relative  shear  stiffness  for  the  case of point  attachments 
at the  ends of  both  the  trough  lines  and  the  crest  lines. 
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Figure 8. - Continued. 
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Figure 8. - Continued. 
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Figure 9. - Relative  shear  stiffness  for  the  case of wide 
attachments at the  ends of the  trough lines. 
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Figure 9. - Concluded. 
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(b) h/p = -4 

Figure 10. - Concluded. 
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Figure 11. - Concluded. 
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Figure 12. - Special  log-log  plot of relative  shear  stiffness data for  the 
case  of wide attachments at the  ends of the  trough  lines. 
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Figure 13. - Comparison of  shear  stiffness  for  trough  lines  held  straight (ref. 1) and 
trough  lines  permitted to curve  (present  analysis),  for  the case of  point 
attachments  at  the  ends of the  trough  lines  only. 
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Figure 14. - Comparison of shear s t i f fness   for  trough l ines   held  straight   (ref .  1) and 
trough l i n e s  permitted to curve (present  analysis),  for  the  case of point 
attachments a t  the ends of both  the trough l ines  and the  crest   l ines .  
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Figure 15. - Comparison  of shea r   s t i f fnes s   fo r   t rough   l i nes   he ld   s t r a igh t   ( r e f .   1 )  and trough 
l ines   permit ted  to   curve  (present   analysis) ,   for   the case of  wide  attachments 
a t  the  ends of the  trough  l ines.  
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Figure 16. - Variation of stresses and displacements along the length 
of the corrugation for a particular geometry with point 
attachments at the  ende of the  trough  lines only. 
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Figure 18. - Variation of stresses and displacements along  the  length 
of the corrugation for a particular geometry with wide 
attachments at the ends of the trough lines, 
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(b.111) Extreme-fiber shear  stress for h/p = .3 

Figure 19. - Continued. 
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Figure 20. - Dimensionless  maximum-stress  parameters  for  the case of point  attachments 
at the  ends of both  the  trough  lines  and  the  crest  lines. 
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Figure 21. - Dimensionless  maximum-stress  parameters  for  the  case of 
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Figure 22. - Comparison of experimental data of reference 8 
(as cited in ref. 2 ) ,  present  theory,  and the 
theofy of reference 2. 
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